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Spacecraft observations of interplanetary shocks have revealed signi�cant deviations in

energetic particle spectra from the di�usive shock acceleration (DSA) theory predictions.

Within almost two decades of particle energy, spanning about seven e-folds upstream,

the particle �ux is almost energy independent. Although at and behind the shock, it

falls o� as ϵ−1 (as predicted by DSA for reasonably strong shocks), the �ux decreases

with the coordinate close to the shock upstream progressively steeper at lower energies,

which leads to a �at energy distribution. Within a standard DSA solution under a �xed

turbulence spectrum, pre-existing or self-excited by accelerated particles, a �at particle

spectrum over an extended upstream area means that the particle di�usivity must be

energy-independent, contrary to most transport models. We propose a resolution of this

paradox by invoking a strongly nonlinear solution upstream under a self-driven but short-

scale turbulence, in which the particle di�usivity increases with energy as ∝ ϵ3/2, but

also decays with the wave energy as 1/Ew, which compensate for the ϵ3/2 rise. The main

di�erence with the traditional DSA is that the wave-particle interaction is nonresonant,

and the turbulence is not saturated at the Bohm level (that would require δB ∼ B0

turbulence saturation amplitude). A steep, energy-dependent �nal drop in the particle

�ux far ahead of the shock to its background level in the solar wind is likely due to a

quick particle escape upstream caused by turbulence de�ciency.
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1. Introduction

The di�usive shock acceleration (DSA) mechanism is known to be universal and robust.

The particle spectrum behind the shock is a power-law in momentum ∝ p−q, with an index

q = 3r/ (r − 1), that depends solely on the shock compression, r. The simplicity of the

DSA is, however, deceptive. This paper considers the DSA disagreement with the spectra

observed in situ, at interplanetary shocks, e.g., [4, 5, 11]. According to these observations,

the particle �ux often �attens upstream, whereas the downstream part agrees with the DSA.

Since the disagreement is partial, it helps identify the DSA elements responsible. Recall that

within the DSA, particles gain energy when they cross and recross the shock by scattering o�

magnetic perturbations of whatever origin. Central to the DSA paradigm is a simultaneous

growth of wave amplitudes and their lengths during the acceleration. Scattering is most

e�cient when the wave-particle resonance condition, krg (p) ∼ 1, is maintained throughout

the wave and particle spectra up to at least the maximum particle momentum, pmax. Here,

rg is the particle gyroradius, rg = cp/eB0, and k is the wave number of resonant Alfven

waves. However, the fastest-growing waves may evolve by mechanisms not necessarily

aimed at achieving the most e�cient particle scattering, implied in most DSA models.

This paper explores alternative particle transport regimes that lead to the observed �at

spectra upstream. We obtain them as a modi�ed steady-state analytic DSA solution. Note

that �at spectra have been obtained as transients using a numerical model in [10].

2. Observational Hints

Figure 1 demonstrates disagreements with the "standard" DSA upstream but the agree-

ment is close enough downstream, where the particle �ux decreases as ϵ−1 with energy,

which is consistent with the DSA if the shock compression ratio r ≈ 4. Immediately on the

upstream side, the low-energy part of the spectrum decays more steeply with distance from

the shock, which is also qualitatively consistent with the DSA, if the particle di�usivity

grows with energy, as often implied in DSA treatments. Further ahead, the disagreements

are evident.

We �rst consider the DSA steady-state solution for a given particle di�usivity κ (ϵ, z)

to understand them. Assuming that the spectrum is ϵ−s at and behind the shock, the DSA

solution upstream arises from a balance between convective and di�usive particle �uxes. In

the shock reference frame, moving at a speed u, on its upstream (z < 0) side, we thus can

write:

κ (ϵ, z)
∂F

∂z
− uF = 0. (1)

To compare this DSA solution with the data, we use here the particle �ux, F (ϵ) dϵ =

f (p) vp2dp/4π, with energy normalization, instead of the ordinary particle distribution, f ,

normalized to 4πp2dp. The DSA solution downstream, with freshly injected particles of

intensity Q, is F = Qϵ−s. Here s = (r + 2) /2 (r − 1) = q/2 − 1. The data indicate that

s ≈ 1.
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Figure 1: Top panels: observed particle spectra. Bottom panels: magnetic �elds. The right panels

represent a zoom into the near shock area upstream, marked on the left with arrows.

Far upstream, the �ux in Fig.1 becomes constant, F ≈ F∞(ϵ). Since F∞(ϵ) ≪ F (0, ϵ),

we have neglected it in eq.(1) for now. A complete solution then is:

F =

Qϵ−s exp
[
−u

∫ 0
z

dz
κ(ϵ,z)

]
, z < 0

Qϵ−s, z ≥ 0
(2)

Immediately behind the shock, the observed spectrum remains nearly constant (see zoom

in Fig.1), which justi�es the above solution at z ≥ 0.

As suggested by Fig.1, the spectrum �attens for z < z0, which requires

u

∫ 0

z0

dz

κ (ϵ, z)
= s ln

ϵ0
ϵ
, (3)

where ϵ0 > ϵ is related to z0, beyond which the spectrum is observed to be �at and which is

about the same for all ϵ. Furthermore, the spectral �atness requires κ to be ϵ-independent

at z < z0. An ordinary DSA assumption is that the particle cyclotron resonance with

waves supports their di�usion, so k ∼ ωc/v, where v is the particle velocity and the wave

frequency ω ≪ ωc. Hence, for the di�usion coe�cient, we have, κ ∼ κ∥ ∝ v3/δB2
k, e.g.,

[6]. This relation links z with ϵ in eq.(3) and requires the z- averaged δB2
k ∝ k−3 ln (k/k0)

within z0 < z < 0, where k0 = ωc/
√
2ϵ0/m. Furthermore, if we ignore the logarithm factor,

κ becomes energy independent for z < z0 if δB
2
k (z) ∝ k−3. However, it is still inconsistent

with a k−1.51wave spectrum observed associated with the �at particle �ux upstream [11].

Turbulence spectra possibly generated by accelerated particles include: k−2 correspond-

ing to the resonant Bohm di�usion of nonrelativistic particles [6] (for r = 4), k−5/3 (Kol-
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mogorov spectrum), and k−3/2 (Iroshnikov-Kraichnan, or IK, almost perfectly agreeing with

the observed spectrum). However, the k−2-like spectrum readily emerges from a Fourier

decomposition of a periodic system of magnetic discontinuities, which corresponds to a se-

quence of shocks. Such structures have been observed ahead of bow-, interplanetary and

cometary shocks (see [13] for an update). They are often called shocklets or shocktrains

and can be easily constructed analytically [8]. Weak shocks can be found in the magnetic

data in Fig.1. As we cannot apply the above-mentioned linear resonance condition to the

particle interaction with these nonlinear structures [7], we explore an alternative approach

below.

Let us assume that shocklets are generated in the shock precursor by one of the insta-

bilities driven by accelerated particles. As it was recently shown [9], the particle pressure

gradient may e�ciently drive an ensemble of shocks that later evolves into an Alfven spec-

trum k−3/2. The wave-particle interaction is likely dominated by a nonresonant krg ≫ 1

condition, but the phases of the short-scale magnetic perturbations are randomized during

the cascade. The nonresonant small-angle scattering frequency is then easily calculated to

be ν = ∆ϑ2/2t ∼
(
lv/r2g

)
(δBl/B0)

2, where l is the turbulence correlation length. Here we

assumed that the angle ∆ϑ is accumulated from vt/l ≫ 1 uncorrelated de�ections, each of

which at an angle ∼ (l/rg) (δBl/B0). Note that unlike the standard quasi-linear derivation

that we implied in the resonant spectrum with κ∥ ∝ v3/δB2
k earlier, the length scale l in

the spectral density δBl is not related to the particle velocity, v. Thus, we arrive at the

following expression for κ∥:

κ∥ =
v2

3ν
≃ v3

lω2
c

(
B0

δBl

)2

Since l is �xed now, κ∥ ∼ ϵ3/2ω2
c , instead of κ∥ ∝ ϵ3/4 for the resonant particle di�usion

in the IK turbulence. This change in the di�usivity scaling is central to the �at spectra

formation.

Apart from the nonresonant di�usion and other DSA modi�cations introduced below,

we essentially follow Bell's approach to the κ suppression by Alfven waves [1] upstream.

Let us introduce a dimensionless wave spectral density, Ew, related to the rms magnetic

�eld �uctuations,
〈
δB2

〉
, and the background �eld, B0, as follows:〈
δB2

〉
B2

0

=

∫
Ew (k) d ln k =

∫
Ew (p) d ln p.

The last relation, implying an approximate resonance kρg (p) ∼ 1 [12], is not an accurate

cyclotron resonance condition and is implausible in the nonresonant case. Nevertheless,

it is physically justi�able to assume that the nonlinear suppression of κ (ϵ) depends most

strongly on the particle �ux with the same ϵ. Therefore, as in Bell's approach, we can relate

κ ∝ κ0 (ϵ) /F (ϵ). For, we introduce a partial pressure of energetic particles, normalized,

similarly to Ew, to d ln p:
P (p) =

8π

3ρV 2
A

vp4f, (4)

Here f is the ordinary particle distribution function normalized to p2dp, v and VA are the

particle and Alfven speeds, respectively, and ρ is the plasma density. Balancing the wave

pondermotive pressure with that of the energetic particles, e.g., [2], we have

(MA − 1)
∂Ew
∂z

=
∂P

∂z
, (5)
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Figure 2: Fit of the data shown in Fig.1 to eq.(13).

where MA = u/VA. Physically, P and Ew are completely independent of each other far

upstream from the shock, which we account for by introducing an integration constant,

ψ (p):

Ew =
64π2

√
2mϵ3/2

3 (MA − 1) ρV 2
A

(F + ψ) . (6)

Note, that ψ (p) is very small compared to F and can generally be neglected, except it

becomes comparable with F far upstream where it ensures a correct transition of F to its

far-upstream value.

3. Acceleration Model

Now we turn to a more general than eq.(1) but still ordinary DSA equation

u
∂f

∂z
− ∂

∂z
κ∥ cos

2 ϑBn
∂f

∂z
= −p

3
∆u

∂f0
∂p

δ (z) +Q0 (p) δ (z) . (7)

It includes on its r.h.s. the acceleration and injection terms, where the velocity jump

∆u ≡ u − ud, with ud being the downstream �ow speed. Unlike eq.(1), this equation is

not constrained by vanishing its l.h.s. at z = ∞. It also includes shock wave obliquity,

ϑnB > 0, but assuming that κ∥ = κ0/Ew with Ew <∼ 1 we dropped the cross �eld transport

term with κ⊥ ≈ κ0Ew.

Integrating eq.(7) once, we can write on the upstream side:

E−1
w cos2 ϑBnκ0

∂f

∂z
− uf (z) = Φ (p) (8)

The integration constant Φ (p) is thus a minus the total z- independent particle �ux

5
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(di�usive plus convective) on the l.h.s. If Φ is known, we may write the full solution and

see how the particle distribution at the shock, f0 (p) ∝ p−4, precipitously �attens upstream

to f ∝ p−2, that is to F (ϵ) ≈ const. In the traditional DSA framework, Φ (p) is speci�ed

using the far-upstream convective �ux Φ = Φ∞ =−uf (−∞, p) ≡ −uf∞ (p), provided that

∂f/∂z → 0, Ew ̸= 0 at z → −∞. Its relation to f0 (p) is obtained by integrating eq.(7)

across the discontinuity at z = 0 and matching the particle �uxes across it. However, the

data shown in Fig.1, point to the following problems with identifying Φ (p) in this way.

Far upstream, a gradual decay of f (p) with the distance suddenly �attens to z− in-

dependent f∞ (p) starting from some z = −z∞ (p) . The derivative ∂f/∂z can be regarded

discontinuous at z = −z∞, thus turning the di�usive particle �ux to zero at this point.

Hence, the breakpoint at z = −z∞ (jump of ∂f/∂z) e�ectively represents a particle sink,

similar to the source of injected particles +Qδ (z), except with the opposite sign. A plau-

sible assumption is that upon di�using to the point z = −z∞ against the plasma �ow,

particles injected and continuously accelerated at the shock front promptly escape toward

−∞ other than di�usively. This observation questions typical DSA analyses that do not

include the particle sink at z = −z∞. Curiously enough, it is reminiscent of the "free-escape

boundary" invoked in Monte Carlo DSA simulations [3], except its position was assumed

energy independent.

As the particle distribution is constant outside (−z∞, 0), the boundary value problem

for eq.(7) should be formulated for z ∈ (−z∞, 0). We, therefore, set f = f∞ (p) as the left

boundary condition at z = −z∞. Both f∞ and z∞ can be extracted from the data in all

energy channels to calibrate the acceleration model.

As a second boundary condition for eq.(7), it is natural to set f = f0 (p) at z = 0, which

can also be extracted from the data. This strategy is also motivated by poorly known u and

ud needed to determine Φ from the shock matching conditions, mentioned above. Upon

relating the wave energy density Ew (z, ϵ) in eq.(8) to the particle �ux F by eq.(6), eq.(8)

can be rewritten in the following form:

K
κ0 (ϵ) ϵ

−3/2

F + ψ (ϵ)
cos2 ϑBn (z)

∂F

∂z
− F = Ψ(ϵ) , (9)

where we have introduced the notation

K ≡
3ρVA

(
1−M−1

A

)
64π2

√
2m

and Ψ(ϵ) = 2m
ϵ

u
Φ.

Eq.(9) thus contains two integration �constants�: ψ (ϵ) and Ψ(ϵ), which are not deter-

mined. They emerged from the integration of the wave production balance in eq.(5) and

the convection-di�usion equation, eq.(7), respectively. As we discussed above, Ψ can in

principle, be expressed through the particle injection rate Q and the �ow speeds u and ud:

Ψ(ϵ) = −ϵ
−s+1

s+ 1

∂

∂ϵ
ϵsF0, (10)

where we converted the power-law index q, introduced earlier for f0 (p), to its equivalent

for F0 = F (ϵ, z = 0), s = q/2− 1. As s is poorly known from the data, we do not impose

the above relation but determine Ψ from �tting the solution given below to the data.

6
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Returning to ψ, near z = −z∞, F is way below its values in the rest of the shock

precursor. By eq.(5), the same conclusion is true for Ew. Hence, the integration constant

ψ (p) in eq.(6) must be small compared to F , except near z = −z∞. Therefore, we treat

Ψ and ψ as free parameters and use F0 and F∞ as more reliable input parameters for the

model. We will approach this problem more systematically in a longer publication, which

should further scrutinize our model.

After introducing a new �coordinate� ζ in place of z with the dimensionality 1/ [F ]

ζ =
ϵ3/2

Kκ0 (ϵ)

∫ z

0

dz

cos2 ϑBn (z)
, (11)

and rewriting eq.(9) as
1

F + ψ

∂F

∂ζ
− F = Ψ, (12)

we obtain its solution, that unconditionally satis�es the boundary condition F (0, ϵ) =

F0 (ϵ):

F = (Ψ− ψ)

[(
1 +

Ψ− ψ

F0 + ψ

)
e(ψ−Ψ)ζ − 1

]−1

− ψ. (13)

This solution is shown in Fig.2 for three di�erent energy channels and some power-

law representations of Ψ , ψ and a suitable choice of the scaling constant K in eq.(11)

to properly convert from the coordinate dependence of F to the time-series given in Fig.2

and satisfy the condition F (−z∞) = F∞ Since for nonresonant wave-particle interactions

κ0 ∝ ϵ3/2 the normalized distance ζ upstream does not depend on energy, which is crucial

for the �atness of F (ϵ). As seen from its series expansion for |(ψ −Ψ) ζ| ≪ 1, valid in the

most of the shock precursor,

F ≃ F0 + ψ

1− (F0 + ψ) ζ
− ψ, (14)
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Figure 3: The same as in Fig.2, but using an

approximate formula in eq.(14),

the uncertain quantity Ψ drops, while ψ is

small compared to F0. According to the

above formula, it is also small compared to

F in the most of the upstream medium.

Moreover, for ζ to the left (upstream) of

a narrow interval −1/F0 < ζ < 0, where

2×10−6 < 1/F0 (ϵ) < 3×10−5 , the solution

can be approximated as F ≈ −1/ζ, as long

as it exceeds ψ ∼ 102 , which is completely

�at, as observed. It is curious to note that

the approximate version in eq.(14), while

not being accurate at large ζ, agrees with

the data more closely in the rest of the shock

precursor, Fig.3. To �t the data everywhere

upstream, it is su�cient to insert power-law dependencies on ϵ for Ψ and ψ in eq.(13) to

match the boundary conditions. We defer a discussion of the systematic determination of

these model parameters to a longer paper.
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Conclusions We have proposed the following two modi�cations to the DSA theory to

explain the �at spectra observed ahead of several interplanetary shocks

� Dependence of particle di�usivity κ on the particle �ux F (nonlinear particle trans-

port) through the scattering wave intensity

� Short-scale magnetic perturbations that are generated by, but not resonant with,

accelerated particles

In the resulting DSA solution, the particle di�usivity increases with energy as ∝ ϵ3/2, simul-

taneously decaying with the wave energy as E−1
w ∝ ϵ−3/2F−1, thus turning ϵ- independent

almost everywhere in the shock precursor.
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