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A specific interest represents solar protons possessing energy enough to induce an atmospheric cas-
cade in the Earth’s atmosphere, whose secondary particles reach the ground, eventually registered
by ground-based detectors e.g. neutron monitors. This class of events is known as ground-level
enhancements (GLEs). The solar cycle 23 provided several strong GLEs, the first observed on 14
July 2000 (the Bastille day event), while the last was observed on 13 December 2006. The sys-
tematic study of relativistic SEPs provides an important basis to understand their acceleration and
propagation in interplanetary space, as well as to quantify the related space weather effects such
as radiation dose at flight altitudes. The Easter event on 15 April 2001 is among the strongest and
accordingly, it is the focus of this study. Here we performed a precise analysis of neutron monitor
records and derived the spectral and angular characteristics of the solar energetic particles during
this event. We modeled the particle propagation in the Earth’s magnetosphere and atmosphere
using a newly computed and verified NM yield function computed at several altitudes above sea
level. The solar protons spectra and pitch angle distributions were obtained in their dynamical
development throughout the event. We assessed the radiation dose at flight altitude and compared
the results with experimental measurements performed with the Liulin gamma probe.
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1. Introduction

Following strong solar eruptions such as solar flares and coronal mass ejections (CMEs), the
Sun occasionally accelerates particles into the high-energy range, known as solar energetic particles
(SEPs) [1]. Naturally, the SEP flux is greater than that of the galactic cosmic ray (GCR). Generally, it
can last for several hours. A particular class of SEP events represents the ground level enhancements
(GLEs) [2, 3], when the energy of SEPs exceed about GeV/nucleon, precisely 433 MeV/nucleon
at sea level and ≈ 300 MeV/nucleon for high-mountain polar regions [4]. GLEs, when entering
in the earth’s atmosphere can produce secondary particles, eventually registered by ground-based
detectors, 𝑒.𝑔. neutron-monitors (NMs) [5].

Historically, GLEs have been studied with ground-based instruments, namely NMs [6, 7], using
the geomagnetosphere as a giant spectrometer, since stations at different locations are sensitive to
a different range of the SEP spectra and arrival direction. GLE events are relatively rare, occurring
a few times per solar cycle. However, they can pose a significant space weather threat, specifically
at flight altitudes, where they can significantly increase the complex radiation field [8, 9].

In this paper, we analyzed a notable event, that is the event on 15 April 2001, GLE # 60,
namely we derived the GLE causing SEP spectra. Then, using the derived spectra and updated
Oulu CRAC:DOMO (Cosmic Ray Atmospheric Cascade: Dosimetric Model) radiation model, we
computed the ambient dose equivalent at typical commercial jet flight altitude(s) and compared
our model studies with dosimetric measurements performed during an intercontinental flight from
Prague to New York (PRG-JFK) with mobile dosimetric unit (MDU) Liulin.

2. GLE # 60 on 15 April 2001

The event of 15 April 2001, known as the Easter GLE, namely GLE # 60 was among the
strongest GLEs of solar cycle 23. It was registered by the global NM network, where the greater
count rate increase of about 225 % was revealed by the South Pole (SOPO) NM. The event followed
a notable increase of solar activity lasting from the end of March to mid-April 2001 leading to
several M-class and nine X-class flares [10], the primary source related to this event was NOAA
Active Region 9415 at S20 W85.

Herein, using a method based on the employment of validated NM yield function, [11, 12],
robust optimization [13, 14] which was used for the analysis of a plethora of GLEs [15–17], we
derived the spectra and anisotropy characteristics of SEPs, during GLE # 60. In general, methods
for an analysis of GLEs using NM data employed modeling of the global NM network response
and unfolding of a given number of model parameters over the experimental NM records [18],
and consist of: computation of the asymptotic directions and cut-off rigidities for the NMs used
in the data analysis; elaborating a convenient initial guess for the optimization, and performing the
optimization itself over modeled and recorded NM responses [19–21].

An illustration of the computed asymptotic direction for selected NMs used for the analysis
is presented in Fig. 1. Herein the magnetospheric computations allowing us to obtain the rigidity
cut-off and asymptotic directions of each NM station used in the analysis were performed using
a new open source tool OTSO [22] using the combination of Tsyganenko [23] and IGRF (epoch
2020) models as external and internal field respectively. This combination of models provides
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reasonable precision and straightforward computation of all the necessary inputs for the NM data
analysis [24, 25].
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Figure 1: Asymptotic directions of selected NM stations and contour plots of equal pitch angles relative to
the derived anisotropy axis during GLE # 60 on 15 April 2001. The cross depicts the interplanetary magnetic
field (IMF) direction obtained by the Advanced Composition Explorer (ACE) satellite.

According to our analysis, the best fit for the spectral and angular distribution of SEPs is obtained
using a modified power-law for the former and Gaussian for the latter, described analytically with
Eq. 1 and Eq. 2, respectively.

𝐽∥ (𝑃) = 𝐽0𝑃
−(𝛾+𝛿𝛾 (𝑃−1) ) (1)

where the flux of particles with rigidity 𝑃 in [GV] is along the axis of symmetry identified by
geographic latitude Ψ and longitude Λ and the power-law exponent is 𝛾 with the steepening of 𝛿𝛾.

The angular distribution, that is the pitch angle distribution (PAD), was approximated with
Gaussian:

𝐺 (𝛼(𝑃)) ∼ exp(−𝛼2/𝜎2) (2)

where 𝛼 is the pitch angle, 𝜎 accounts for the width of the distribution.
An illustration of the derived spectra and pitch angle distribution (PAD) is given in Fig. 2. The

SEP spectra were hard during the initial (14:00-14:30 UT) and main phase of the event (14:30–16:00
UT) with a gradual rising of the particle flux. After the main phase of the event the derived SEP
spectra were softer, and a considerable decrease in the particle flux compared to the initial stages
of the event was observed.
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Figure 2: Derived rigidity spectra (left panel) and PAD (right panel) during selected stages of GLE # 60 as
denoted in the legend. The black line on the left panel depicts the GCR particle flux computed with the force
field model.

3. Computation of the dose at flight altitudes during GLE # 60

As was aforementioned during GLEs, the SEPs usually lead to an enhancement of the complex
radiation field at flight altitudes. Recently, several models for computation of the exposure to
radiation (dose) at flight altitudes have been developed [26, 27]. In this work, we employed
the updated radiation model Oulu CRAC:DOMO [28]. The model is based on pre-computed
yield functions, that is Monte Carlo simulated response matrix. The description, experimental
verification, and comparison with other models and applications are given elsewhere [29–31].

The dose rate at a given ℎ induced by a primary CR particle is the integral product of the
primary CR particle spectrum with the corresponding yield function:

𝐸 (ℎ, 𝑃𝑐𝑢𝑡 ) =
∑︁
𝑖

∫ ∞

𝑇 (𝑃𝑐𝑢𝑡 )

∫
Ω

𝐽𝑖 (𝑇)𝑌𝑖 (𝑇, ℎ)𝑑Ω𝑑𝑇, (3)

where 𝐽𝑖 (𝑇) is the differential energy spectrum of the primary 𝑖−th component of CRs (proton or
𝛼−particle, the latter accounting effectively for all heavy particles) and the and𝑌𝑖 is the correspond-
ing effective dose/ambient dose yield function. The integration is conducted over the kinetic energy
𝑇 , depending also on the rigidity cut-off 𝑃𝑐𝑢𝑡 , and Ω is the solid angle.

Using the derived spectra during GLE # 60 and the CRAC:DOMO model, we computed the
exposure to radiation during the event, considered in this study. Fig. 3 depicts the global map of
one-hour integrated ambient dose equivalent during the peak phase of GLE # 60. The Easter event
was notable because the radiation field and the dose were measured during the PRG-JFK flight by
an MDU Liulin device, [32], a device based on a silicon semiconductor detector, and extensively
used for aviation and space dosimetry measurements [33].

For precise and realistic comparison between the model and experimental results, we explicitly
considered the time evolution of the SEPs characteristics throughout the event and the geomag-
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Figure 3: Map of the ambient dose equivalent integrated over 1h during the peak phase of GLE # 60.
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Figure 4: Modeled and measured ambient dose equivalent during GLE # 60 as denoted in the legend.

netospheric conditions [21]. We note that MDU Liulin possesses constrained sensitivity to the
secondary hadron component of the CRs, specifically neutrons, so that can detect roughly 10–20%
of these particles. Therefore, the corresponding scaling of the measurements is performed in order
to account for all the contributions of the complex radiation field at flight altitude. The scaled values
can be seen in Fig. 4, in which the scaled measurements agree well with the model results.

4. Conclusions

Herein, we derived characteristics, namely the SEP spectra, angular distribution, and apparent
source position during GLE # 60, the so-called Easter event, that occurred on April 15 2001.
Subsequently, using the reconstructed spectra and CRAC:DOMO model we computed the effective
dose at L350 during GLE # 60 presented as a global map. We performed a comparison between
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our model full-chain computations of the ambient dose equivalent and MDU Liulin measurements
and good agreement was derived.

Therefore, we claim that our full-chain method presented here provides a good basis to study
the contribution of relativistic SEPs on the radiation field in the Earth’s atmosphere at different
scales and altitudes and allows the cross-calibration and referencing of other models employed in
the field of the aviation dosimetry.
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