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Lorentz Invariance Violation (LIV) is a fundamental violation of space-time symmetry, implying
that physical laws vary under Lorentz transformation. The neutrinos are weakly interacting
fundamental particles which can act as a probe for understanding the violation of Lorentz invariance
symmetry. Here, we consider intrinsic LIV effects that can exist even in a vacuum. We use an
effective field theory known as Standard Model Extension (SME) as a framework to treat the
LIV as a small perturbation to the standard matter Hamiltonian. The effective Hamiltonian
can be implemented to investigate how the presence of LIV parameters modifies the neutrino
oscillation probabilities. We particularly study the effect of CPT-Violating LIV terms on the mass-
induced neutrino oscillations. In this work, we explore the impact of LIV on neutrino oscillation
probabilities in matter taking DUNE as a case study. We observe a significant effect on neutrino
oscillations in the presence of a non-zero LIV parameter. We further investigate the impact of
LIV parameters on the CP-measurement sensitivity at DUNE.
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1. Introduction

Neutrinos (𝜈’s) interact with matter particles through weak interactions. The phenomenon of
neutrino oscillations cannot be explained within the Standard Model (SM) framework as 𝜈’s are
massless particles in SM. Therefore, 𝜈-oscillations lead us to physics beyond the Standard Model
(BSM). The major obstacles in neutrino physics are the precise measurements of CP-Violation
in the leptonic sector, the determination of mass hierarchy of neutrinos and the octant of 𝜃23.
The presence of non-standard effects like Lorentz invariance violation (LIV) and non-standard
interactions (NSI) has the potential to affect the sensitivity of different 𝜈-oscillation experiments in
various measurements. Hence, it is important to quantify the impact of such sub-dominant effects
on 𝜈-oscillation probabilities.

Lorentz invariance is a fundamental symmetry that indicates the invariance under the Lorentz
transformations. The breakdown of space-time symmetry can lead to a violation of Lorentz
symmetry. The Charge-Parity-Time Reversal (CPT) symmetry violation may lead to LIV as shown
in [1]. As neutrino oscillations are a sensitive interference phenomenon, the sub-dominant effect
of LIV can be explored using long-baseline neutrino oscillation experiments. It should be noted
that LIV is intrinsic and can exist even in a vacuum. The presence of LIV can be incorporated
using the Standard Model Extension (SME) framework that treats LIV as a sub-dominant effect
on 𝜈-oscillations. In this work, we have focused on exploring the effects of LIV on long-baseline
(LBL) 𝜈 experiments taking the DUNE experiment [2] as a test case.

2. Formalism

In SM, the 𝜈’s interact with matter particles via charge-current and neutral-current weak
interactions, where the standard Hamiltonian can be written as,

𝐻𝑆𝐼 = 𝐻𝑣 + 𝐻𝑚
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where, 𝐻𝑣 is the vacuum Hamiltonian, 𝐻𝑚 is matter potential and U is the PMNS mixing matrix
[5, 6]. A time-dependent perturbation theory can be used to describe Lorentz symmetry violation
in 𝜈-oscillations as shown in [3, 4]. In the neutrino sector, the effects of LIV can be incorporated as
a small perturbation to 𝐻𝑆𝐼 by following the minimal Standard Model Extension framework (SME)
[7]. The effective Hamiltonian in the presence of LIV can be framed as [8],

𝐻𝑒 𝑓 𝑓 = 𝐻𝑆𝐼 +
[
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The 𝐻
𝐶𝑃𝑇−
𝐿𝐼𝑉

and 𝐻
𝐶𝑃𝑇+
𝐿𝐼𝑉

matrix corresponds to the CPT-odd and CPT-even contributions where,
𝑎𝛼𝛽 are CPT-odd and 𝑐𝛼𝛽 are CPT-even parameters. The standard Sun-centered celestial equatorial
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frame is taken as the reference frame as it is roughly inertial over the run time of most earth-based
experiments [9, 10]. These parameters will quantify the effects of LIV on oscillation probabilities.
From equation 2, we observe that LIV can be present due to CPT-odd/CPT-even parameters. In this
work, we have focused on the off-diagonal CPT-odd LIV elements, 𝑎𝛼𝛽 = |𝑎𝛼𝛽 |𝑒𝑖𝜙𝛼𝛽 . We explore
the effect of 𝑎𝛼𝛽 on the neutrino oscillation probabilities and study its impact on the CP-Violation
and CP-Precision sensitivity at DUNE [13].

3. Methodology

In this work, we explore the impact of off-diagonal LIV parameters on the 𝜈-oscillation
probabilities, by taking the normal mass ordering as the true ordering. We have used the GLoBES
[11] framework to implement the effective LIV Hamiltonian for the DUNE experiment. The values
of 𝜈-mixing parameters used for this study are tabulated in 1.

Parameters Values Parameters Values
𝜃12 [◦] 34.51 L[𝑘𝑚] 1300
𝜃13 [◦] 8.44 𝛿𝐶𝑃 −𝜋/2
𝜃23 [◦] 47 Hierarchy Normal

△𝑚2
21

[
10−5𝑒𝑉2] 7.56 △𝑚2

31
[
10−3𝑒𝑉2] 2.55

Table 1: The values of 𝜈-mixing parameters that are used for GLoBES simulation [12].

In order to quantify the CP-measurement sensitivity at DUNE, we define a statistical 𝜒2 as,

𝜒2 ≡ min
𝜂

∑︁
𝑖

∑︁
𝑗

[
𝑁

𝑖, 𝑗
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]2

𝑁
𝑖, 𝑗
𝑡𝑟𝑢𝑒

, (3)

where, 𝑁 𝑖, 𝑗
𝑡𝑟𝑢𝑒 and 𝑁

𝑖, 𝑗
𝑡𝑒𝑠𝑡 represents the count of true and test events in the {𝑖, 𝑗}-th bin respectively.

This helps in quantifying the experiment’s capability of distinguishing between CP-conserving and
CP-violating values.

4. Results and Discussion

In this subsection 4.1, we first explore the effect of 𝑎𝛼𝛽 and 𝜙𝛼𝛽 on the appearance (𝑃𝜇𝑒) &
disappearance (𝑃𝜇𝜇) probabilities for DUNE). We then study the impact of 𝑎𝛼𝛽 on 𝑃𝜇𝑒 and 𝑃𝜇𝜇

for varying 𝛿𝐶𝑃 . In subsections 4.2 and 4.3, we study the impact of 𝑎𝛼𝛽 on CP-Violation and
CP-Precision sensitivities at DUNE.

4.1 Effect of LIV on 𝜈-oscillation probabilities

In Figure 1, we have plotted 𝑃𝜇𝑒 and 𝑃𝜇𝜇 for the LIV parameters 𝑎𝑒𝜇, 𝑎𝑒𝜏 and 𝑎𝜇𝜏 respectively
by varying energy in the range 0.5-10GeV. The red (black) line represents the 𝑎𝛼𝛽 = 2, 𝜙𝛼𝛽 = 0
case (SI case). The grey band represents the variation of LIV phase 𝜙𝛼𝛽 ∈ [−𝜋, 𝜋]. The parameters
𝑎𝑒𝜇, 𝑎𝑒𝜏 and 𝑎𝜇𝜏 have the most impact on the 𝜈-oscillation probabilities. In presence of 𝑎𝑒𝜇, the
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Figure 1: Effect of LIV on 𝑃𝜇𝑒 & 𝑃𝜇𝜇 in presence of 𝑎𝑒𝜇(top-left), 𝑎𝑒𝜏(top-right) and 𝑎𝜇𝜏(bottom).

Figure 2: Effects of LIV 𝑎𝑒𝜇(top-left), 𝑎𝑒𝜏(top-right) and 𝑎𝜇𝜏(bottom) for varying 𝛿𝐶𝑃 .

appearance probabilities get enhanced for energies beyond the second oscillation peak. However,
the presence of corresponding LIV phase 𝜙𝑒𝜇 can suppress the probability values. For 𝑎𝑒𝜏 , a
suppression of 𝑃𝜇𝑒 can be seen at higher energies. We also see that the effect of 𝑎𝑒𝜇 and 𝑎𝑒𝜏 are
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complimentary to each other. And the presence of an off-diagonal phase can significantly affect the
𝜈-oscillation probabilities.

In Figure 2, we study the effects of 𝑎𝛼𝛽 on 𝜈-oscillation probabilities for a varying 𝛿𝐶𝑃

value. We have plotted the oscillation probabilities for the complete 𝛿𝐶𝑃 space i.e. [−𝜋, 𝜋]. The
red (black) line represents the 𝑎𝛼𝛽 = 2, 𝜙𝛼𝛽 = 0 case (SI case). The grey band represents
the variation of LIV phase 𝜙𝛼𝛽 ∈ [−𝜋, 𝜋]. We see that for all the off-diagonal parameters
𝑎𝛼𝛽 the enhancement/suppression of oscillation probabilities depends majorly on the 𝛿𝐶𝑃 − 𝜙𝛼𝛽

combinations. We also note that 𝜙𝛼𝛽 may bring degeneracy in the measurement of 𝛿𝐶𝑃.

Figure 3: CP-Violation Sensitivities for 𝑎𝑒𝜇(top-left), 𝑎𝑒𝜏(top-right) and 𝑎𝜇𝜏(bottom) at DUNE.

4.2 Impact of LIV on CP-Violation Sensitivities

In Figure 3, we have studied the effects of off-diagonal parameters 𝑎𝛼𝛽 on the CP-Violation
sensitivities at DUNE. The red (black) line implies the 𝑎𝛼𝛽 = 2, 𝜙𝛼𝛽 = 0 case (SI case). In all
panels, the grey region represents the effects of varying LIV phase 𝜙𝛼𝛽 ∈ [−𝜋, 𝜋]. It can be
seen that the presence of 𝜙𝛼𝛽 may bring degeneracy in 𝛿𝐶𝑃-measurement. In presence of 𝑎𝑒𝜇 &
𝑎𝑒𝜏 , sensitivity depends on the combinations of 𝜙𝛼𝛽 and 𝑎𝛼𝛽 . For non-zero 𝜙𝜇𝜏 , the sensitivity
deteriorates in the presence of 𝑎𝜇𝜏 .

4.3 Impact of LIV on CP-Precision Sensitivities

In Figure 4, we study the 𝛿𝐶𝑃 constraining capability of DUNE given that the true 𝛿𝐶𝑃 value
is known. In presence of 𝑎𝑒𝜇, 𝜙𝑒𝜇 dependent enhancement/suppression is seen. For 𝑎𝑒𝜏 with
𝜙𝑒𝜏 = 0, the sensitivity is at base of the grey region. For some values of 𝜙𝑒𝜏 , an enhancement in
the CP-Precision sensitivities can be seen. The effect on sensitivities for 𝑎𝜇𝜏 is nominal, though
the presence of phase can lead to an enhancement.
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Figure 4: CP-Precision Sensitivities for 𝑎𝑒𝜇(top- left), 𝑎𝑒𝜏(top-right) and 𝑎𝜇𝜏(bottom) at DUNE.

5. Conclusion

The different ongoing and upcoming LBL 𝜈-oscillation experiments are focused on the precise
measurements of 𝜈-oscillation parameters with utmost accuracy. The study of sub-dominant effects
like LIV is very important as it can affect the measurement capabilities of such experiments. We
find that LIV can significantly modify the 𝜈-oscillation probabilities. We also see that it can
enhance/suppress the CP measurement capabilities at DUNE.
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