
P
o
S
(
I
C
R
C
2
0
2
3
)
1
1
2
7

Quantum kinetic equations with flavor and
particle-antiparticle coherences for neutrinos

Kimmo Kainulainen𝑎,𝑏 and Harri Parkkinen𝑎,𝑏,∗

𝑎Department of Physics, PL 35 (YFL), 40014 University of Jyväskylä, Finland
𝑏Helsinki Institute of Physics, PL 64, 00014 University of Helsinki, Finland

E-mail: kimmo.kainulainen@jyu.fi, harri.h.parkkinen@jyu.fi

We develop a formalism to model neutrino evolution encompassing both flavor and particle-
antiparticle mixings and decohering collisions. Our results include a quantum kinetic equation
(a set of coupled scalar equations) for the generalized neutrino density matrix, valid for arbitrary
neutrino masses and kinematics, and a comprehensive set of Feynman rules to compute collision
integrals for coherently evolving states. We expose a novel shell structure describing the phase
space of mixing neutrinos and show how the prior information on the system can enter into the
theory and modify the neutrino flavor evolution. Potential applications of our results include
modelling neutrino distributions in hot and dense environments and studies of neutrino mixing
effects in colliders and in the early Universe.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:kimmo.kainulainen@jyu.fi
mailto:harri.h.parkkinen@jyu.fi
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
3
)
1
1
2
7

QKE’s for mixing neutrinos Harri Parkkinen

1. Introduction

Practically solvable quantum kinetic equations (QKE’s) which can model accurately coherent
neutrino evolution in presence of decohering collisions are necessary in many applications in
neutrino physics [1]. QKE’s including the flavour coherences at different approximations have been
known for some time [2–4] and spatially homogeneous equations including particle-antiparticle
mixing can be found e.g. in [5–8]. Some aspects of particle-antiparticle mixing were considered
also in [9–11]. A fully self-consistent derivation of the QKE’s, which include both the forward
scattering potentials and the decohering collision integrals and encompass both flavour and particle-
antiparticle mixing coherences has still been missing until now. Here we report a work [12] that
fills this gap. We clarify the role and distinction between the flavour and antiparticle oscillations
and also derive simpler equations without the particle-antiparticle mixing. These equations are
sufficient for description of the neutrino mixing and interactions in hot and dense environments and
also for studying heavy neutrino oscillations in collider experiments and in different contexts in the
early Universe, such as Leptogenesis or BBN.

Our derivation is based on the full Schwinger-Dyson (SD) equations and the Closed Time Path
formulation. In a few clearly justified steps we reduce the SD-equations to a set of scalar quantum
kinetic equations, which include the information of flavor and particle-antiparticle mixing [12].
Our work is based on earlier work in [5–8]. Our derivation assumes only adiabatically varying
background fields, the validity of weak coupling expansion and eventually the spectral limit. As
a result our equations are valid for arbitrary neutrino masses and kinematics. An integral part of
the derivation is the introduction of a projective representation which reduces the SD-equation into
a set of Boltzmann-type transport equations which contain all information of flavor or particle-
antiparticle mixing. It also directly exposes a novel shell structure in the weak coupling limit: in
addition to the usual mass shells new "coherence shells" emerge, that carry information about the
particle-antiparticle coherences. In the UR-limit our equations become diagonal in the particle-
antiparticle mixing to order 𝑚/𝐸 and their flavour structure is greatly simplified. These equations
are sufficient for most astrophysics and collider applications whereas the full equation is needed
e.g. for problems involving particle production during preheating [13, 14].

2. Quantum kinetic equations

Coherently mixing out-of-equilibrium systems can be described by the Schwinger-Dyson equation
which is equivalent to a coupled set of Kadanoff-Baym (KB) equations for real-time valued cor-
relation functions. KB equations are manifestly non-local and the statistical functions are directly
coupled to the pole functions. To get a single local quantum kinetic equation (QKE), the pole equa-
tions must be decoupled from the statistical ones and the latter must be localized. In the Wigner
space the localization translates to a truncation of the infinite order gradient expansion. This can
be justified by the assumption of adiabatic background fields, or enforcing it by integrating over the
momentum variables. The decoupling problem can be handled by splitting the statistical function
into a background part, which is strongly coupled to the pole functions, and to a perturbation, whose
equation formally decouples (this formal decoupling allows a wide range of solutions which makes
the decoupling exact). For details of the procedure see [12]. The resulting decoupled QKE for the
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local neutrino Wightman function 𝑆<𝒌 (𝑡, 𝑡) reads:

𝜕𝑡𝑆
<

𝒌 +
1
2
{𝜶 · ∇, 𝑆<

𝒌 } = −𝑖
[
H𝒌 , 𝑆

<

𝒌

]
+ 𝑖Ξ<

𝒌 + C̄<

H,𝒌 , (1)

where 𝛼 = 𝛾0𝛾𝑖 and the Hamiltonian is H𝒌 = 𝜶 · 𝒌𝛿𝑖 𝑗 + 𝑚𝑖𝛿𝑖 𝑗𝛾
0. The forward scattering term

Ξ<

𝒌 and the Hermitian part of the collision term C̄<

H,𝒌 are given in [12]. Equation (1) holds all
information about coherence evolution for mixing neutrinos, but it is not yet useful for practical
purposes.

To make the analysis and the interpretation of the results more convenient we write Eq. (1) in
the projective representation, constructed utilizing the helicity and vacuum Hamiltonian eigenbases.
Indeed, without loss of generality we can parametrize the Wightman functions in adiabatic systems
as follows:

𝑆<

𝒌𝑖 𝑗 (𝑡, 𝒙) =
∑︁
ℎ𝑎𝑎′

𝑓 <𝑎𝑎
′

𝒌ℎ𝑖 𝑗 (𝑡, 𝒙)𝑃
𝑎𝑎′

𝒌ℎ𝑖 𝑗 , (2)

where 𝑓 <𝑎𝑎
′

𝒌ℎ𝑖 𝑗
(𝑡, 𝒙) are some unknown distribution functions (or the density matrix elements) and

we defined the projection operator:

𝑃𝑎𝑏
𝒌ℎ𝑖 𝑗 = 𝑁𝑎𝑏

𝒌𝑖 𝑗𝑃𝒌ℎ𝑃
𝑎
𝒌𝑖𝛾

0𝑃𝑏
𝒌 𝑗
, (3)

where the helicity and the vacuum energy projection operators read

𝑃𝒌ℎ ≡ 1
2
(
1 + ℎ𝜶 · �̂�𝛾5) and 𝑃𝑎

𝒌𝑖 ≡
1
2
(
1 + 𝑎

H𝒌𝑖

𝜔𝒌𝑖

)
. (4)

Here ℎ = ±1 is the helicity, 𝑎, 𝑏 = ±1 are the energy sign indices, 𝑖, 𝑗 are the flavor indices and
𝜔𝒌𝑖 = (𝒌2 + 𝑚2

𝑖
)1/2 is the vacuum energy of the neutrino eigenstate. These projection operators

satisfy completeness, orthogonality, and idempotence relations. The normalization factor is chosen
as 𝑁𝑎𝑏

𝒌𝑖 𝑗
≡

√
2(1 + 𝑎𝑏(𝛾−1

𝒌𝑖 𝛾
−1
𝒌 𝑗

− 𝑣𝒌𝑖𝑣𝒌 𝑗)−1/2, with 𝛾−1
𝒌𝑖 = 𝑚𝑖/𝜔𝒌𝑖 and 𝑣𝒌𝑖 = |𝒌 |/𝜔𝒌𝑖 . With this

choice the distribution functions will get the usual normalization in the thermal limit.
Utilizing the projective representation (2), multiplying with 𝑃𝑒′𝑒

𝒌ℎ 𝑗𝑖
and taking trace over the

Dirac indices, it is simple task to reduce equation (1) to a set of scalar equations:1

𝜕𝑡 𝑓
<𝑒𝑒′

𝒌ℎ𝑖 𝑗 + (V𝑒′𝑒
𝒌ℎ𝑖 𝑗)𝑎𝑎′ �̂� · ∇ 𝑓 <𝑎𝑎

′

𝒌ℎ𝑖 𝑗 = − 2𝑖Δ𝜔𝑒𝑒′

𝒌𝑖 𝑗 𝑓
<𝑒𝑒′

𝒌ℎ𝑖 𝑗 + Tr
[
C̄<

H,𝒌ℎ𝑖 𝑗𝑃
𝑒′𝑒
𝒌ℎ 𝑗𝑖

]
− 𝑖(WH𝑒𝑒′

𝒌ℎ𝑖 𝑗 )
𝑙
𝑎 𝑓

<𝑎𝑒′

𝒌ℎ𝑙 𝑗 + 𝑖[(WH𝑒′𝑒
𝒌ℎ 𝑗𝑖 )

𝑙
𝑎]∗ 𝑓 <𝑒𝑎𝒌ℎ𝑖𝑙 ,

(5)

where �̂� = 𝒌/|𝒌 | and the repeated indices, 𝑎 and 𝑙, are summed over. Frequency sign indices 𝑒, 𝑒′

define the oscillation frequency:
2Δ𝜔𝑒𝑒′

𝒌𝑖 𝑗 ≡ 𝜔𝑒
𝒌𝑖 − 𝜔𝑒′

𝒌 𝑗
, (6)

with 𝜔𝑒
𝒌𝑖

≡ 𝑒𝜔𝒌𝑖 . The forward scattering tensor reads

(WH𝑒𝑒′

𝒌ℎ𝑖 𝑗 )
𝑙
𝑎 ≡ Tr

[
𝑃𝑒′𝑒
𝒌ℎ 𝑗𝑖Σ̄

H
𝒌𝑖𝑙 (𝜔

𝑎
𝒌𝑖)𝑃

𝑎𝑒′

𝒌ℎ𝑙 𝑗

]
, (7)

1We assumed that in the forward scattering terms in (5) the background solution has the same form as the perturbation.
This is strictly speaking true only in the spectral limit [12], which is what we are implicitly assuming here.
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and the velocity tensor can be written as

(V𝑒′𝑒
𝒌ℎ𝑖 𝑗)𝑎𝑎′ = 𝛿𝑎′𝑒′V𝑒𝑎𝑒′

𝒌ℎ𝑖 𝑗 + 𝛿𝑎𝑒V𝑎′𝑒′𝑒
𝒌ℎ 𝑗𝑖 , (8)

where
V𝑎𝑏𝑐

𝒌ℎ𝑖 𝑗 ≡
1
2
𝑁𝑎𝑐
𝒌𝑖 𝑗𝑁

𝑏𝑐
𝒌𝑖 𝑗

(
𝑣𝒌𝑖

[ 𝑎

(𝑁𝑏𝑐
𝒌𝑖 𝑗

)2
+ 𝑏

(𝑁𝑎𝑐
𝒌𝑖 𝑗

)2

]
− 𝑣𝒌 𝑗𝑐𝛿𝑎,−𝑏

)
. (9)

The collision term can be expressed in multiple different ways. An especially useful form is

Tr
[
C̄<

H,𝒌ℎ𝑖 𝑗𝑃
𝑒′𝑒
𝒌ℎ 𝑗𝑖

]
=

1
2

(
(W>𝑒𝑒′

𝒌ℎ𝑖 𝑗 )
𝑙
𝑎 𝑓

<𝑎𝑒′

𝒌ℎ𝑙 𝑗 + [(W>𝑒′𝑒
𝒌ℎ 𝑗𝑖 )

𝑙
𝑎]∗ 𝑓 <𝑒𝑎𝒌ℎ𝑖𝑙 − (>↔<)

)
, (10)

where the sum over 𝑙 and 𝑎 is again implied and the W𝑠-tensors are defined similarly to (7) with
Σ̄H → Σ̄s, where 𝑠 =>, <.

All terms in our master equation (5) have a simple interpretation: The first term on the right
hand side coming from the Hamiltonian commutator term determines the relevant oscillation times
scales for different solutions. The second term in the right hands side of (5) is the collision term
and the terms in the second row are forward scattering corrections. The left hand side displays
a generalized Liouville term with the velocity tensor that determines the effect of different group
velocities on the coherence evolution. The apparent complexity of (5) reflects the generality of the
equation, which is valid for arbitrary neutrino masses and kinematics and includes all information
of flavor and particle-antiparticle mixings.

We wrote the master equation (5) using frequency states rather than particle-antiparticle solu-
tions, since this is notationally much simpler. The positive frequency solutions correspond naturally
to particles, and the negative solutions with inverted 3-momenta correspond to antiparticles, ac-
cording the following relation for distribution functions: 𝑓

<,>

𝒌ℎ𝑖 𝑗
= − 𝑓

>,<−−
(−𝒌 )ℎ𝑖 𝑗 . Here functions with the

bar refer to antiparticles. Using this replacement rule one can always transform the results between
frequency solutions and particle-antiparticle solutions when needed.

UR-limit. The master equation (5) simplifies a lot in the ultra-relativistic (UR) limit. If we define
a diagonal velocity matrix 𝑣𝒌𝑖 𝑗 ≡ 𝛿𝑖 𝑗 |𝒌 |/𝜔𝒌𝑖 , we can write equation (5) in the compact and familiar
form of a density matrix evolution equation:

𝜕𝑡 𝑓
𝑒
𝒌ℎ +

1
2 {𝑣𝒌 , �̂� · ∇ 𝑓 𝑒

𝒌ℎ
} = −𝑖[𝐻𝑒

𝒌ℎ
, 𝑓 𝑒

𝒌ℎ
] + C̄𝑒

𝒌ℎ
, (11)

where (C̄𝑒
𝒌ℎ
)𝑖 𝑗 ≡ Tr[C̄<

H,𝒌ℎ𝑖 𝑗𝑃
𝑒𝑒
𝒌ℎ 𝑗𝑖

] is the frequency diagonal collision integral and (𝐻𝑒
𝒌ℎ
)𝑖 𝑗 is the

effective matter Hamiltonian:
(𝐻𝑒

𝒌ℎ)𝑖 𝑗 = 𝑒𝛿𝑖 𝑗𝜔𝒌𝑖 + (𝑉𝑒
𝒌ℎ)𝑖 𝑗 , (12)

where (𝑉𝑒
𝒌ℎ
)𝑖 𝑗 is the standard forward scattering potential. With light neutrinos and relatively

small propagation distances, one can further set 𝑣𝒌𝑖 𝑗 → 𝛿𝑖 𝑗 , in which case the spatial gradient
term reduces to 1

2 {𝑣𝒌 , �̂� · ∇ 𝑓 𝑒
𝒌ℎ
} → �̂� · ∇ 𝑓 𝑒

𝒌ℎ
. Equation (11) is frequency diagonal and no longer

contains the particle-antiparticle coherences. It still describes the strong coupling between particle-
and antiparticle sectors via the matter potential term, which leads to many interesting phenomena
in the neutrino mixing in the early Universe and in compact objects [1].
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Z (q0,q)

k pai bj ∼ ig
2cw

γµPLUij

W (q0, q)

k pai bα ∼ ig√
2
γµPLUiα

∼ 1

2ω̄e
′e
kij

Dab
khljγ

0De′e
khji

ai kh bj ∼ Dab
khij

a′jal ej

kh

e′j

Figure 1: Feynman rules for computing the squared matrix element for coherent neutrino states. The first
propagator should be used for all internal lines and the red propagator (DMP) is used for the outgoing line
in the diagram. In the 𝑊-boson vertex the matrix 𝑈𝑖𝛼 reduces to the usual PMNS-matrix in the case of pure
active-active mixing (here 𝛼 is lepton flavour). Similarly, in the pure active-active mixing case, the matrix
𝑈𝑖 𝑗 in the 𝑍-boson vertex reduces to 𝛿𝑖 𝑗 . Finally 𝑐𝑤 = cos 𝜃𝑤 . Figure is taken from [12].

3. Collision terms

Computation of the full collision term with flavor and particle-antiparticle mixing for arbitrary
neutrino masses and kinematics has remained unsolved until now. Using our formalism the collision
integrals are easy to evaluate however. We find that they can always be divided into a dynamical
matrix elements squared and phase space elements, giving rise to the familiar structure:

C<𝑒𝑒′

H,𝒌ℎ𝑖 𝑗 =
∑︁

𝑌

1
2�̄�𝑎𝑎′

𝒌𝑙 𝑗

∫
dPS3

[
1
2 (M

2)𝑒𝑒′
𝒌ℎ𝑖 𝑗 {𝒑𝑖 ,𝑌 }Λ𝒌ℎ 𝑗 {𝒑𝑖 ,𝑌 },𝑥 + (ℎ.𝑐.)𝑒′𝑒

𝑗𝑖

]
. (13)

Note the flipping of indices in the Hermitian conjugate term, in accordance with (10). We collected
all summed indices into curly brackets with 𝑌 ≡ {X𝑖 , ℎ

′, 𝑎, 𝑎′, 𝑙} and defined a shorthand notation
𝐴X𝑖

≡ 𝐴
𝑎𝑖𝑎

′
𝑖

ℎ𝑖𝑙𝑖𝑙
′
𝑖

. All particle distribution functions were combined into Λ ≡ Λ> − Λ< with

Λ
<,>

𝒌ℎ 𝑗 {𝒑𝑖 ,𝑌 },𝑥 = 𝑓
<,>

X1𝒑1
(𝑥) 𝑓 >,<X2𝒑2

(𝑥) 𝑓 <,>X3𝒑3
(𝑥) 𝑓 >,<𝑎𝑎

′

𝒌ℎ′𝑙 𝑗 (𝑥), (14)

and the phase space factor reads∫
dPS3 ≡

∫ [ ∏
𝑖=1,3

d3 𝒑𝑖
(2𝜋)32�̄�𝒑𝑖𝑙𝑖𝑙′𝑖

]
(2𝜋)4𝛿4(𝑘𝑎𝑙 + 𝑝

𝑎2
2 𝑙2 − 𝑝

𝑎′
1

1 𝑙′1
− 𝑝

𝑎′
3

3 𝑙′3
). (15)

The matrix element squared (M2)𝑒𝑒′
𝒌ℎ𝑖 𝑗 {𝒑𝑖𝑌 } contains all dynamical details related to the interac-

tion process. It can be evaluated using a simple set of Feynman rules given in figure 1, where we used
the 𝐷-tensor notation: 𝐷𝑎𝑏

𝒌ℎ𝑖 𝑗
≡ 2�̄�𝑎𝑏

𝒌𝑖 𝑗
𝑃𝑎𝑏
𝒌ℎ𝑖 𝑗

𝛾0 ≡ 𝑎𝑏�̂�𝑎𝑏
𝒌𝑖 𝑗

𝑃𝒌ℎ (/𝑘𝑎𝑖 + 𝑚𝑖) (/𝑘𝑏𝑗 + 𝑚 𝑗), where we defined
(𝑘𝑎

𝑖
)𝜇 ≡ (𝑎𝜔𝒌𝑖 , 𝒌) as well as �̂�𝑎𝑏

𝒌𝑖 𝑗
≡ 𝑁𝑎𝑏

𝒌𝑖 𝑗
�̄�𝑎𝑏
𝒌𝑖 𝑗

/(2𝜔𝑎
𝒌𝑖
𝜔𝑏
𝒌 𝑗
) and finally 2�̄�𝑎𝑏

𝒌𝑖 𝑗
≡ 𝑎𝜔𝒌𝑖 + 𝑏𝜔𝒌 𝑗 . These

Feynman rules are to be used with the following instructions:

• Draw the loop diagrams that contribute to a given interaction process to the desired order
in perturbation theory, and assign a unique momentum variable and flavor and frequency
indices for each internal propagator line in the graph, allowed by the interaction vertices.

• Assign the Keldysh-path indices to all vertices to isolate cuts that give rise to the desired
interaction processes. You only need to evaluate Σ> = Σ21 directly, so the first index is always
2 and the last 1.
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t, µ

p2h2

p3h3

p1h1

q1q2
v0 u0

w0, ν
2 1

2 1

la ie
t 2

kh

je′ja′

l1a1 l′1a
′
1

l′2a
′
2 l2a2

l3a3 l′3a
′
3

t, µ

p3h3

p2h2

p1h1q̃2

q1

u0

v0

w0, ν
2

1

2

1

ja′la
ie
t 2

kh

je′ie

l3a3

l′3a
′
3

l2a2

l′2a
′
2

l1a1

l′1a
′
1

α

β

β α

Figure 2: Two-loop graphs contributing to neutrino-neutrino scattering with the explicit index structures and
cuts. The right (direct, non-2PI) diagram contains the 𝑠- and 𝑡-channel processes and the left (interference,
2PI) diagram contains their interference. The black dot implies the starting point of the evaluation of the
matrix element squared, and the red propagator is the DMP. The figure is taken from [12].

• Read off the phase space functions contributing to theΛ-factor from all internal cut propagator
lines. Add the phase space factor 𝑓 <𝑎𝑎

′

𝒌ℎ𝑙 𝑗
/2𝜔𝑎𝑎′

𝒌ℎ𝑙 𝑗
, associated with the external, dependent

momentum propagator (DMP), marked red in diagrams in figure 2.

• Deduce the phase space density factor with the overall energy conserving delta function. This
depends on the number of loops in the diagram and the cut one is interested in.

• Compute the matrix element squared using the Feynman rules shown in fig. 1. Start from
the equivalent of the black dot shown in the diagrams in figure 2 and follow the direction of
momentum in the graph. For each internal cut-line insert the standard propagator shown in
the first diagram in 1. For each ("22") "11" line use the (anti) Feynman propagator. Add the
DMP at the end of the fermion line it is connected to. Take a trace over the Dirac indices.

• Divide the result by two and add the Hermitian conjugate accounting for the flip of indices
as indicated in (13).

Neutrino-neutrino scattering. As a demonstration, we give the squared matrix element for
neutrino-neutrino scattering proceeding via 𝑠- and 𝑡-channels and their interference. This process
corresponds to the Feynman diagrams and the cuts shown in 2. Using the rules given above, one
can immediately write the matrix elements squared for these processes:

(M2)𝑒𝑒′𝒌ℎ𝑖 𝑗 {𝒑𝑖 ,Y} ≡
1

2�̄�𝑒𝑒′
𝒌𝑖 𝑗

Tr
[
(𝐴int,𝑎

𝒌𝑖𝑙{𝒑𝒊Xi} + 𝐴
dir,𝑎
𝒌𝑖𝑙{𝒑𝒊Xi})𝐷

𝑎𝑎′

𝒌ℎ′𝑙 𝑗𝛾
0𝐷𝑒′𝑒

𝒌ℎ 𝑗𝑖

]
, (16)

where the leftmost 2-particle irreducible (2PI) interference diagram contributes the term

𝐴
int,𝑎
𝒌𝑖𝑙{𝒑𝑖 ,X𝑖 } =

( 𝑖𝑔

2𝑐𝑤

)4
𝑈𝑖𝑙3𝑈𝑙′3𝑙2

𝑈𝑙′2𝑙2
𝑈𝑙′2𝑙

D𝑍𝛼𝜈 (𝑞1)D∗
𝑍𝜇𝛽 (𝑞2)

×𝛾𝜇𝑃L 𝐷X1𝒑1𝛾
𝛼𝑃L 𝐷X2𝒑2𝛾

𝛽𝑃L 𝐷X3𝒑3𝛾
𝜈𝑃L, (17)
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and the rightmost non-2PI direct diagram gives

𝐴
dir,𝑎
𝒌𝑖𝑙{𝒑𝑖 ,X𝑖 } = −

( 𝑖𝑔

2𝑐𝑤

)4
𝑈𝑖𝑙1𝑈𝑙′1𝑙

𝑈𝑙′2𝑙3
𝑈𝑙′3𝑙2

D𝑍𝛼𝜈 (𝑞1)D∗
𝑍𝜇𝛽 (𝑞2)

× 𝛾𝜇𝑃L 𝐷X1𝒑1𝛾
𝜈𝑃L Tr

[
𝛾𝛼𝑃L𝐷X2𝒑2𝛾

𝛽𝑃L𝐷X3𝒑3

]
. (18)

Here the gauge boson momenta are 𝑞1 = (𝜔𝑎
𝒌𝑙
− 𝜔

𝑎′
1

𝒑1𝑙
′
1
; 𝒌− 𝒑1), 𝑞2 = (𝜔𝑎3

𝒑3𝑙3
− 𝜔

𝑎′
2

𝒑2𝑙
′
2
; 𝒌− 𝒑1) and

𝑞2 = (𝜔𝑎1
𝒑1𝑙1

− 𝜔
𝑎′

2
𝒑2𝑙

′
2
; 𝒌− 𝒑3). The energy sign indices determine to which process (either a 2-2

scattering or a 1-3 decay) each term contributes. Here we gave the most general matrix element
structure, which is however easy to evaluate using algebraic manipulation programs. The result
simplifies dramatically in the UR-limit however, and becomes easily computable by hand [12].

4. Weight functions

An essential feature of our proof, largely left aside in this brief note, was the localization of the
KB-equations, which corresponded to an integration over the frequencies in the Wigner space [12].
The physical reasoning for the integration is that one can never have a complete information about a
given system. What matters from the point of view of the oscillation phenomenon, is the in general
poor knowledge of the frequency and/or the momentum of the state in comparison to the phase space
separation of the shell-solutions associated with the mixing. It is precisely this lack of information
that allows for the oscillating solutions to exist. Indeed, if one had a precise information of the
4-momentum (e.g. due to very precise measurement of neutrino beam parameters), the separate
mass-eigenstates would be emitted in the process, with no oscillation pattern left to study.

This reasoning implies that the physical quantities that one can study are some coarse grained
quantities which must carry the information about the preparation of the system into the theory
describing their evolution. We can express this quantitatively by stating that the observable corre-
lation function, that can be related to physically measurable quantities �̄� and 𝑥, is some weighted
average of the original correlation function:

𝑆𝑖 𝑗 ( �̄� , 𝑥) ≡
1

(2𝜋)4

∫
d4𝑥d4𝑘 W( �̄� , 𝑥; 𝑘, 𝑥)𝑆𝑖 𝑗 (𝑘, 𝑥), (19)

where W is some weight function encoding the observationally accessible information about the
system. Weight functions can affect any or all variables relevant for the problem. The parameters
relevant for this paper were helicity frequency, 3-momentum, and spatial and temporal coordinates.
For most problems the simple weight function we used (flat weight over the frequencies) and the
ensuing master equations is sufficient. More general weight functions could be interesting avenue
to derive adjustable and quantitative ways to take the effects of neutrino production and detection
processes into account when describing neutrino evolution.
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