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Super-Kamiokande is a large water Cherenkov detector located approximately 1,000m under-
ground in Kamioka, Japan. The detector is a cylindrical tank 39.3m in diameter and 41.4m high,
filled with about 50 kton of gadolinium loaded water. We measured 9Li isotopic nuclei produced
by muon spallation using the data taken from 2020 to 2022 by the Super-Kamiokande detector
with 0.011% gadolinium concentration in water. Cosmic-ray muons that penetrate the detector
form hadron showers in water and secondary hadrons produce unstable radioisotopes through the
spallation. Among those spallation products, 9Li is a long-lived radioactive isotope with a lifetime
of about 0.26 seconds. It emits an electron and a neutron at a branching ratio of 50.8%, which
is difficult to distinguish from the inverse beta decay caused by electron antineutrinos. There-
fore, 9Li is one of the main background sources in the observation of diffuse supernova neutrino
background. In this study, the energy spectrum of the electrons was measured with a threshold at
4.5MeV which is lowered from the previous result with pure water. We will report the analysis
method and results.
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1. Introduction

Most of neutrino detectors are built underground to suppress background from cosmic-ray
muons. However, with a certain frequency, cosmic-ray muons penetrate the detector and often
cause subsequent showers which produce unstable radioactive isotopes by the spallation interaction
with the nuclei in the detector. These radioactive isotopes produced by the spallation are the
major background in the searches for MeV-scale neutrinos, and among those, the observation of
diffuse supernova neutrino backgrounds (DSNBs) has recently been eagerly awaited. DSNBs are
searched for using inverse beta decay (IBD) reactions by electron antineutrinos. Among radioactive
isotopes from the muon spallation, 9Li is one of the major background sources for DSNB searches
especially below 14MeV. 9Li is a relatively long-lived radioisotope with a lifetime of 0.257 seconds
and therefore difficult to reject by the time correlations with muons. In addition, it is difficult to
distinguish 9Li from the IBD reaction because it emits an electron and a neutron via the beta decay
at a branching ratio of 50.8%. In this study, the energy spectrum of the electrons from the 9Li
β+n decays was measured using the Super-Kamiokande (SK) detector. The energy threshold in the
previous analysis [1] was 7.5 MeV for reconstructed energy (Erec), while the threshold was lowered
to 4.5 MeV in this study to cover the extended search region in the future DSNB searches at SK.

2. Super-Kamiokande

Super-Kamiokande is a large water Cherenkov detector located 1,000 m underground at
Kamioka, Japan. The detector is a cylindrical tank 39.3 m in diameter and 41.4 m high [2],
filled with approximately 50 kton of gadolinium (Gd) loaded water [3]. The detector is concen-
trically divided into two regions: the inner detector (ID) and the outer detector (OD). The ID is
a cylindrical region with the volume of 32.5 kton and 11,129 inward-facing 20-inch PMTs on the
wall. The OD is a region surrounding the ID with a thickness of approximately 2m. The OD has
1,885 outward-facing 8-inch PMTs attached to the wall.

The Super-Kamiokande gadolinium (SK-Gd) experiment has been started in August 2020
with dissolving Gd2(SO4)3 · 8H2O at the Gd concentration of 0.01wt% in water. One of the main
purposes of SK-Gd is the first observation of DSNBs with the improved neutron detection efficiency
and suppressed background. Before the Gd-loading, pairs of a positron from the IBD reaction and
a 2.2 MeV γ ray from neutron capture on proton have been searched for as the signals of the
IBD reactions, although it was difficult to tag neutrons because the energy of γ ray is lower than
the energy threshold of SK [4]. While, when Gd captures neutrons, several γ rays are emitted
with a total energy of about 8MeV that can be easily distinguished from the background due to
radioactivity. The fraction of neutron capture on Gd is about 50% at the Gd concentration of
0.01wt%. The Gd concentration was increased in June 2022 to 0.03wt%, in which 75% of neutrons
are captured on Gd.

3. Selection of 9Li candidates

Three consecutive events are observed in the SK detector for a 9Li: first, a muon penetrates the
SK detector, then an electron is emitted in the beta decay of 9Li (prompt event), and later neutron
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is captured on Gd (delayed event). In this study, 9Li candidates are selected by requiring the triple
coincidence, that is a pair of an electron and a neutron capture event, and a parent muon within one
second before the pair. In this analysis, 454.2 days of data taken during the period of the 0.01wt%
concentration is used.

3.1 Selection of prompt and delayed event pair

A fiducial volume cut was applied for the reconstituted vertex to remove background due to
radioactive decay near the ID wall. The fiducial volume is defined as the volume 2m away from
the ID wall, which corresponds to 22.5 kton. In addition, a cut by the effective distance from
the ID wall deff was also applied to exclude the remaining background. The effective distance is
defined by the reconstructed vertex and direction as the distance from the reconstructed vertex to
the ID wall back along the reconstructed direction. The cut criteria for deff are set for each Erec:
deff > 650 cm (Erec < 5.5 MeV) and deff > 400 cm (Erec ≥ 5.5 MeV). In addition, reconstruction
quality cuts are also applied with parameters that indicate the accuracy of reconstructions for the
event vertex and direction.

Ranges of Erec are set as 4.5 ≤ Erec < 14.5 MeV for the prompt event candidates and 3.5 ≤
Erec < 10 MeV for the delayed event candidates. The upper range of Erec for the prompt event
comes from the end point of the β spectrum.

Finally, a restriction is imposed on the distance ∆r between the reconstructed vertices for
candidates of the prompt and delayed events. In this study, event pairs satisfying ∆r < 350 cm are
selected.

3.2 Selection of the parent muon event

The SK detector consists of two volumes, the ID and the OD, and each is equipped with
the PMTs. Since muons emit Cherenkov light when they enter the detector, both the OD and ID
triggers should be issued for muons. In addition, the number of photoelectrons observed in the ID
is strongly correlated with the energy deposit of muons in the water. In this study, a total number
of photoelectrons is required to be greater than 1,000 for muon event candidates.

Once the prompt-delayed pair is found, the parent muon event candidate is searched within the
last one second. As the muon rate is about 2 events/s at SK, there are often more than one muons
within one second. Here, muons within 1ms before the pair are excluded from the search in order to
exclude multiple neutrons induced by the muon. Among those, the parent muon of the 9Li isotope
is selected with the following five variables which represent the characteristics of energetic muons
and spallation interactions.

• Lt : transverse distance from the the prompt event vertex to the muon track.

• Ll: longitudinal distance between the vertex position of the prompt event and the
point in the muon track associated with the maximum dE/dx.

• Qµ: total number of photoelectrons observed by the ID PMTs for the muon track.

• Qres: difference between the observed number of photoelectrons and the expec-
tation from the muon track length assuming a minimum ionization particle.

• Nn: number of spallation neutron candidates after the muon.
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Figure 1: PDFs for Ll (top left), Qµ (top right), Qres (bottom left), and Nn (bottom right). The black and
red lines show the spallation and random samples, respectively.

First, the parent muon candidate is selected with likelihood method using probability density
functions (PDFs) for four variables Ll, Qµ, Qres, and Nn. Second, triple coincidence of the prompt-
delayed pair and the parent muon is selected as a 9Li candidate if Lt for the muon candidate is less
than 500 cm.

To generate PDFs for spallation variables, two different samples were prepared from the data.
One is a “pre-sample” composed of prompt-delayed pairs and associated muons within one second
before the prompt event candidate, and the other is a “post-sample” composed of prompt-delayed
pairs and associated muons within one second after the prompt event candidate. If the prompt-
delayed pair is a spallation event, the pre-sample contains muons that produced the prompt event and
uncorrelatedmuons, while the post-sample consists of only uncorrelatedmuons. Probability density
functions were generated for the spallation and random samples separately. The spallation sample
was generated by subtracting the post-sample from the pre sample, while the random sample was
taken directly from the post-sample. The PDFs from the spallation sample (PDFi

spall) and random
sample (PDFi

rand) are shown in Figure 1, where i represents the variable i = Ll, Qµ, Qres, and Nn.
Using these PDFs, the spallation likelihood L was defined as

L = log

(∏
i

PDFi
spall

PDFi
rand

)
. (1)

The likelihoodLwas calculated for eachmuonwithin one second before the prompt event candidate,
and the muon with the largest L was selected as the parent muon event if it satisfies Lt < 500 cm.
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Δt between muon and prompt event candidate (s) Δt between prompt and delayed event candidate (μs)
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Figure 2: ∆tµ distribution (left) and ∆tn distribution (right). The black circles show 9Li candidates and the
blue solid lines are the fit results for each figure.

3.3 Extraction of 9Li rates

Events that meet the triple coincidence of muon, prompt, and delayed event were obtained as
9Li candidates. For the 9Li candidates, following two time difference distributions are obtained
(Figure 2).

• Time difference between the muon and prompt event (∆tµ).

• Time difference between the prompt and delayed event (∆tn).

First, the ∆tn distribution was fitted by the following simple exponential function.

f (∆tn) = An exp
(
−
∆tn
τn

)
+ Bn, (2)

where τn is the neutron capture time constant on Gd, An represents the normalization of neutron
capture events, and Bn represents the background events. The parameter τn is fitted as τn =
102.3 ± 14.7 µs, which is consistent with the capture time constant obtained by the measurements
using the americium beryllium (Am/Be) source, 116.4 ± 0.3 µs.

Next, the ∆tµ distribution was fitted with a combination of two different exponential functions

f (∆tµ) = A exp
(
−
∆tµ
τ9Li

)
+ B exp

(
−
∆tµ
τ12B

)
+ C, (3)

where τ9Li and τ12B represent the lifetimes of 9Li and 12B isotopes, which are 0.257 s and 0.029 s,
respectively. The parameter A and B represent the normalizations of 9Li and 12B events, and C is
the background rate. In order to measure the β spectrum from the 9Li β + n decay, the fitting is
performed for each range of the reconstructed kinetic energy Ekin (= Erec−0.511 MeV) of the prompt
event as shown in Figure 3. The number of 9Li candidates N9Li is calculated by the integration of
the fitting results for each Ekin as follows.

N9Li =

∫ 1 s

0.001 s
A exp

(
−
∆tµ
τ9Li

)
d(∆tµ) (4)
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Figure 3: ∆tµ distribution for each reconstructed kinetic energy Ekin.

The β spectrum from the 9Li β + n decay was extracted using N9Li for each Ekin region. The
result is shown in Figure 4 and comparable with the Monte-Carlo (MC) simulation using GEANT4
[5]. The result is normalized by the fiducial volume and the live-time, while the correction for the
efficiency is not yet applied.

4. Conclusion

The SK-Gd experiment had been started with Gd solved in water since August 2020 aiming
for the first observation of DSNB. In the search, cosmogenic isotopes, mainly 9Li, will be major
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Preliminary

Figure 4: The β spectrum from the 9Li β + n decay. The black circle shows the data and the red line shows
the MC.

background source. The cosmogenic 9Li production was measured with 454.2 days of the data.
The β spectrum from 9Li β + n decay was measured with the energy threshold of 4.5MeV which
is lower than the previous results using the data taken with pure water. As the future prospect, 9Li
production rate and the spectrum will be evaluated including the correction for the efficiency and
the systematic uncertainties.
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