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Convolutional neural networks (CNNs) have seen extensive applications in scientific data analysis,
including in neutrino telescopes. However, the data from these experiments present numerous chal-
lenges to CNNs, such as non-regular geometry, sparsity, and high dimensionality. Consequently,
CNNs are highly inefficient on neutrino telescope data, and require significant pre-processing that
results in information loss. We propose sparse submanifold convolutions (SSCNNs) as a solution
to these issues and show that the SSCNN event reconstruction performance is comparable to or
better than traditional and machine learning algorithms. Additionally, our SSCNN runs approxi-
mately 16 times faster than a traditional CNN on a GPU. As a result of this speedup, it is expected
to be capable of handling the trigger-level event rate of IceCube-scale neutrino telescopes. These
networks could be used to improve the first estimation of the neutrino energy and direction to
seed more advanced reconstructions, or to provide this information to an alert-sending system to
quickly follow-up interesting events.
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1. Introduction

Gigaton-scale neutrino telescopes have ushered in a fresh perspective of the Universe, enabling
us to examine the highest energy neutrinos. While there are a variety of proposed designs, many
follow the detection principle outlined by the DUMAND project [20] and consist of an array
of optical modules (OMs) deployed in liquid or solid water. This detector paradigm shows great
promise, and analyses by these experiments have already provided the first evidence of astrophysical
neutrino sources [4, 6]. However, prior to analysis, it’s crucial to separate high-energy neutrinos
from the overwhelming background induced by cosmic-ray muons. While a high-energy neutrino
may trigger a detector once every few minutes, cosmic-ray muons typically induce a trigger rate on
the order of kHz.

Figure 1: Event rates of triggers in different neutrino telescopes [1, 10, 12] compared to the run-times of
various reconstruction methods. Sparse submanifold CNNs and their performance are detailed in this article.
The CNN and maximum likelihood method run-times are taken from [16]. Notably, sparse submanifold CNNs
can process events well above standard trigger rates in both ice- and water-based experiments.

Given their inability to cross a significant part of the Earth without halting, cosmic-ray muons
exhibit a unique zenith dependency. This characteristic allows for their elimination by applying a cut
on the reconstructed direction of an event. Consequently, a dependable reconstruction capable of
managing the∼kHz background frequency is the initial stage in distinguishing neutrinos. Moreover,
a rapid reconstruction method could serve as part of an alert system that notifies researchers of events
that are highly likely to be astrophysical neutrinos.

At the trigger-level, a simple but fast reconstruction is typically done by solving a least squares
problem via matrix inversion, as is the case for LineFit [2] in IceCube or QFit in ANTARES [8].
Machine learning has demonstrated potential by offering a reconstruction of similar quality with
fewer runtime demands [14, 16]; however, the fastest convolutional neural network (CNN) developed
for high-energy neutrinos is not able to keep pace with a kHz-scale trigger-level rate. In this
proceeding, we present a reconstruction technique employing a sparse submanifold CNN (SSCNN),
which resolves this runtime challenge. We will illustrate our method by focusing on solid-water
detectors, but our results and conclusions readily generalize to water-based detectors. In this context,
our SSCNN achieves better angular resolutions than methods such as Linefit while requiring a
comparable run-time, enabling improved trigger-level cuts and serving as a better seed for the
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likelihood-based reconstruction. Fig. 1 summarizes typical event rates found in neutrino telescopes
and compares these to the execution rate of various reconstructions. At the same time, SSCNN is
also able to reconstruct the neutrino energy, a task which has not been done at trigger-level.

The rest of this article is organized as follows. In Sec. 2 we motivate and introduce sparse
submanifold convolutions; in Sec. 3 we describe the data sets used for training and testing; in Sec. 4
we evaluate the performance of the network. Finally, in Sec. 5 we conclude with some parting
words. The code detailing our implementation of SSCNN has been made available at Ref. [21].

2. Methods

Convolutional neural networks (CNNs) have become the staple architecture for image-like data,
and have achieved great success in a wide range of applications, including neutrino physics [5, 19].
However, data from neutrino telescopes presents inherent challenges to CNNs. In particular:

• Non-regular geometry: CNNs are designed to operate on images, which are arranged on
Cartesian grids. Neutrino telescope sensors are typically spaced irregularly [9], with varying
distances and arrangements in between each sensor.

• Sparsity: Traditional CNNs use convolutions which operate on all points in the given input
data. This leads to computational inefficiencies when the data is sparse.

• High dimensionality: Events occur in large spatial and temporal scales. This makes using
traditional CNNs computationally unfeasible on raw 4D data (three spatial and one time)
without information loss or significant pre-processing.

In this proceeding, we present a solution to address these challenges by incorporating sparse
submanifold convolutions into our approach [15]. Previous studies have demonstrated the effective-
ness of this strategy in neutrino experiments utilizing liquid argon time projection chambers [7, 13].
The utilization of sparse submanifold convolutions in our network offers a natural resolution to
the challenges outlined earlier. Sparsity and high dimensionality are no longer a concern, as the
number of computations performed will depend only on the number of OM hits. With this improved
computational efficiency, we can also handle non-regular geometries more smoothly by using the
spatial coordinates of each OM hit (in meters from the center of the detector). This allows us to
consider data of any shape or arrangement, without restricting ourselves to a Cartesian grid.

Our SSCNN replaces traditional convolutions with sparse submanifold convolutions. Unlike
traditional convolutions that apply a learned kernel over the entire input data, sparse submanifold
convolutions exclusively operate on the non-zero elements. This approach effectively eliminates
the inefficiency associated with employing CNNs on sparse data, where the majority of operations
involve multiplying zeros together. Furthermore, to preserve the sparsity of the data after applying
multiple layers in succession, sparse submanifold convolutions enforces that the coordinates and
number of output activations matches those of the input. In other words, the features do not spread
layer after layer. This is crucial for the efficiency of SSCNNs that are very deep, as the data would
otherwise become progressively less sparse throughout the network. The lack of feature spreading
will have a minimal impact on performance as long as the network can rely on local information.
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It should be noted that SSCNNs still compute over a grid-like structure, but this structure can be
arbitrarily large because the network only operates on a submanifold of it.

As input, the SSCNN takes in a list of coordinates representing the space-time coordinates
of OMs in which there were a nonzero number of photon hits, and an associated feature vector
containing the number of photon hits which occurred within a 1 ns time window on that OM,
starting from the time indicated in the coordinate tensor. Notably, each coordinate can correspond
to any feature vector, allowing for flexibility in encoding neutrino telescope data configurations.
While a 3-dimensional approach focusing solely on spatial positions and using timing information
as features is possible, we chose to treat timing as coordinates. This decision enables us to capitalize
on the intrinsic time structure inherent in neutrino telescope data.

3. Event Simulation

Our benchmark case follows an ice-embedded IceCube-like geometry, where the OMs are
spaced our approximately 125 meters horizontally and 17 meters vertically. The events used in this
work are 𝜇− from 𝜈𝜇 charged-current interactions. The initial neutrino sampling, charged lepton
propagation, and photon propagation were simulated using the Prometheus package [18]. The
incident neutrinos have energies between 102 GeV and 106 GeV sampled from a power-law with a
spectral index of -1. Since most of the events that trigger neutrino telescopes are downward-going
cosmic-ray muons, we generated a down-going dataset. Specifically, the initial momenta have
zenith angles between 80◦ and 180◦. It is worth noting that this definition of zenith angle is different
from the convention which is typically used by neutrino telescopes, which take 0◦ to be downgoing.
In summary, the data consists of the module ID, module position and time of arrival of all simulated
photons which reached an OM. Please see [18] for additional details on the internal simulation
process. Importantly, the photons generated in Prometheus are only tracked to the surface of the
OM.

We then add noise in the style of [17] to the resulting photon distributions. Once all photons
have been added, we then implement a trigger criteria similar to the one described in [3], based
off pairs of coincident light in neighboring OMs. After this cut, we are left with 462892 events
from 3 million simulated events, which we split between the training and test data sets of 412892
and 50000 sizes respectively. One can see distributions of the events which pass this trigger as a
function of true energy, zenith, and azimuth in Fig. 2.

Beyond the trigger-level dataset, we assess the network on a dataset with additional quality
cuts, enabling performance evaluation on events more likely for final analysis. This involves three
quantities: 𝑁OM, 𝑟COG, and 𝑅ell. The initial two variables—the count of unique OMs detecting
light and the distance from the charge-weighted center of gravity to the detector’s center—are
simple. However, 𝑅ell requires fitting a two-parameter ellipsoid to all light-detecting OMs, and then
determining the long-axis to short-axis ratio—closer to one suggests spherical events, higher ratios
imply longer, track-like events. Straight cuts on these variables demand events to meet 𝑁OM > 11,
𝑟COG < 400 m, and 2 < 𝑅ell < 8. The first cut eliminates low-charge, hard-to-reconstruct events,
the second removes corner clipper events due to 𝜇− passing near the detector’s edge, and the final
cut on 𝑅ell ensures events have a long lever-arm for reconstruction. These cuts decrease the training
and testing dataset sizes to 108585 and 13183 events, respectively.
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Figure 2: Distributions of events in true energy and zenith. Left: The distribution of events used as a
function of true neutrino energy. As expected, the generated distribution is flat when binned logarithmically
since the generation was sampled according to a 𝐸−1

𝜈 distribution. Right: The same distribution as a function
of true neutrino zenith angle. Once again the generated distribution is flat in the cosine of this angle, which
is proportional to the differential solid angle. nearly flat, with slightly lower efficiency near the horizon.

4. Performance

We utilize a ResNet-based architecture, taking advantage of residual connections between
layers to promote robust learning for deeper networks. A typical block of the network consists
of a sparse submanifold convolution, followed by batch normalization and the parametric rectified
linear unit (PReLU) activation function. We use the PyTorch deep learning framework and the
MinkowskiEngine [11] library to implement the network. The network was trained on each dataset
(trigger and quality) for 25 epochs using a batch size of 128 and the AdamW optimizer. The initial
learning rate was set at 0.001 and was dropped periodically during training.

In this study, we focus on training the network to estimate two key parameters: the primary
neutrino energy, denoted as 𝐸𝜈 , and the directional pointing vector composed of its three components
(𝑋𝜈 , 𝑌𝜈 , 𝑍𝜈). To address complexities arising from azimuthal periodicity and undesirable boundary
condition behavior at extreme angles, we opt to learn the directional vector directly instead of
relying on zenith and azimuth angles.

To accommodate the wide range of magnitudes that these parameters can exhibit, the network
is trained to predict the logarithmic energy, log10(𝐸𝜈), and the normalized directional vectors. This
normalization is crucial for handling variations across different scales effectively.

For the energy reconstruction training, the LogCosh loss function is used, as it is more robust
to outliers than the standard MSE loss. The loss function is defined as follows,

L𝐸 =
1
𝑁

𝑁∑︁
𝑖

log (cosh (𝑥𝑖 − 𝑦𝑖)), (1)

where 𝑁 is the number of events in the batch, 𝑥𝑖 are the predictions, and 𝑦𝑖 are the labels. For the
angular reconstruction, an angular distance loss function is used, namely,

L𝐴 =
1
𝑁

𝑁∑︁
𝑖

arccos

(
®𝑋𝑖 · ®𝑌𝑖

| |𝑋𝑖 | | | |𝑌𝑖 | |

)
, (2)
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SSCNN (GPU) 0.090 ± 0.007 ms
SSCNN (CPU) 65.22 ± 117.04 ms
Max Likelihood (CPU) 42.6 ± 175 ms

Table 1: Per-event average run-time performance. The forward pass run-times (mean ± STD) for SSCNN
was evaluated on trigger-level events. A likelihood-based method for energy and angular reconstruction was
included for reference [16].

where ®𝑋𝑖 and ®𝑌𝑖 are the predicted and true directional vectors, respectively. The total loss is given
by the sum of these two separate losses, with an additional weighting factor on each loss to ensure
balanced learning.

We evaluate the run-time performance of the SSCNN in terms of the forward pass duration
on both CPU and GPU hardware. The CPU benchmark is performed on a single core of an Intel
Xeon Platinum 8358 CPU, while the GPU benchmark uses a 40 GB NVIDIA A100. As is generally
the case for neural networks, running on GPU is preferred due to its superior parallel computation
capabilities. Additionally, the use of sparse submanifold convolutions has greatly enhanced our
GPU memory efficiency, enabling us to run larger batch sizes during inference. The SSCNN can
process events at a rate of 11,098 Hz on a 40 GB NVIDIA A100 GPU, while handling a batch
size of 12,288 events simultaneously. This is fast enough to handle the expected ∼kHz current and
planned large neutrino telescopes. The run-time results on both GPU and CPU are summarized in
Table 1.

Figure 3: Reconstruction performance of SSCNN. Left: Angular reconstruction results. Right: Energy
reconstruction results. Both results are binned by the true neutrino energy. Solid lines indicate the median
of each bin, while the shaded regions in of the energy reconstruction results are the 5% to 95% confidence
level bands.

We first test the network on reconstructing the direction of the primary neutrino. We measure
performance using the angular resolution metric, which is calculated by taking the angular difference
between the predicted and true directional vectors. Fig. 3 shows the angular resolutions as a function
of the true neutrino energy. Lower-energy events generally produce less photon hits, leading to
a shorter lever-arm and, consequently, worse resolution. As expected, the trigger-level events are
generally harder to reconstruct due to the lower light yield and the presence of corner-clipper
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events. This is especially true for angular reconstruction, where the SSCNN is able to reach under
4° median angular resolution on the highest-energy events. Enforcing the previously described
quality cuts improves the results of the SSCNN by roughly 2° across the entire energy range. This
performance is comparable to or better than current trigger-level reconstruction methods used in
neutrino telescopes. For example, the current trigger-level direction reconstruction at IceCube
is done using the traditional Linefit algorithm [2], which has a median angular resolution of
approximately 10° on raw data.

We also test the networks by reconstructing the energy of the primary neutrino. Fig. 3
summarizes the energy reconstruction results. Events where the interaction point of the neutrino
occurs outside the detector, known as through-going events, make up the majority of our dataset.
As a result, predicting the neutrino energy has an inherent, irreducible uncertainty produced by the
unknown interaction vertex and the muon losses outside of the detector. This missing-information
problem leads to an intrinsic uncertainty in the logarithmic neutrino energy of approximately 0.4
for a through-going event. Additionally, the network performs noticeably worse at the lowest and
highest energies, with a tendency to overpredict at low energies and underpredict at high energies.
This behavior can be attributed to the artificial energy bounds on the simulated training dataset.

5. Conclusions

In this proceeding, we have utilized an SSCNN for event reconstruction in neutrino telescopes.
It has been demonstrated that these networks maintain competitive performance in energy and
angular reconstruction tasks, operating at the 𝜇s time scale. This acceleration allows the SSCNN
to process events at a significantly higher rate than the trigger rate of current neutrino telescopes,
a measure anticipated to be analogous for other active or under-construction neutrino telescopes
such as IceCube, KM3NeT, P-ONE, and Baikal-GVD. Reaching this threshold makes the SSCNN a
feasible option for online reconstruction at the detector site where resources are limited and where
first guesses of the energy and direction of the neutrino are made. As highlighted in the introduction,
this can have a substantial impact on current real-time analyses, where our first estimations can
also be utilized in an alert-sending system, which will notify collaborators if the detector sees an
interesting event. Additionally, these reconstructions can serve as seeds for more time-consuming
reconstructions, and thus improving these first estimations will be beneficial to all subsequent
analyses.
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