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Measurement of iron cosmic-ray primaries below 10GeV/n
by use of the geomagnetic effect with CALET
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The CALET Calorimeter on the International Space Station(ISS) has previously measured the
flux and spectrum of iron cosmic-ray nuclei above 10 GeV/n. In order to extend the measurement
to the region below 10 GeV/n, we carry out an analysis to utilize the geomagnetic effect. Cutoff
rigidities of cosmic-ray nuclei are calculated for all directions for each observation point in the
ISS orbit. The integral spectrum of observed rigidities is then obtained by counting the number
of iron nuclei in each bin of cutoff rigidity. The absolute flux and differential spectrum are then
calculated by taking the detection efficiencies into account. Here we present the details of the
analysis procedure and the iron spectrum below 10 GeV/n.
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1. Introduction

The CALET experiment has achieved the measurement of the flux and the energy spectra of
various kinds of cosmic-ray nuclei to reveal the origin, acceleration, and propagation mechanisms[1–
5]. The energy spectrum for the iron primaries has been published by CALET for the energy region
from 10 GeV/n to more than 1 TeV/n[6]. We performed flux calculations using the geomagnetic
cutoff to obtain the iron spectrum to a lower energy region, less than 10 GeV/n. The details of the
analysis procedure and the result will be reported here.

2. CALET instrument

The CALET calorimeter consists of three parts. The upper part, the CHarge Detector (CHD),
is composed of two layers of 1 cm thick plastic scintillators, CHDx and CHDy. It is used for
the charge determination of the incident particles. Below that, the Imaging Calorimeter (IMC) is
installed. It consists of 448 scintillating fibers with a cross-section of 1 mm by 1 mm, stacked
one layer each in the orthogonal x and y directions, alternating with tungsten plates. It is used for
the track reconstruction and the detailed study of the shower development. The lower part is the
Total AbSorption Calorimeter (TASC), which is composed of twelve layers of 2 cm thick PWO
scintillators stacked in the x and y directions. It is used for energy determination. Details on the
instrument can be found in the Supplemental Material (SM) of Ref. [7]. In this study, only the
CHD and IMC were used for the analysis.

3. Data analysis

3.1 Calculation of cutoff rigidity by the backtracing method

First, cutoff rigidity calculations were performed for every direction at observation points along
the ISS orbit. The geomagnetic field at a fixed time is calculated by the geomagnetic field models,
IGRF13(International Geomagnetic Reference Field)[8] and TS05[9]. IGRF is a standard model
for the internal magnetic field. TS05 is a model for the external magnetic field with the disturbance
caused by solar wind. The calculation of the geomagnetic field is performed by these two models
together. Note that TS05 uses solar wind parameters based on actual measurements, and the data
in the periods without solar wind observation data are not used in this analysis.

Next, the latitude, longitude, and altitude of the observation point are set, and an antiproton
is emitted in the direction of a certain zenith angle and a certain azimuthal angle with a certain
rigidity R. Then, while solving the motion equations using the Runge-Kutta method, the particle
track is traced. The tracing process is stopped when;

(1) the particle hit the Earth

(2) the particle reached the magnetopause

(3) the particle is far from the Earth more than 15 times the Earth’s radius.

In case (1), this condition is classified in the forbidden region. A nucleus cannot enter from this
direction with this rigidity. In cases (2) and (3), these conditions are classified in the allowed region.
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A nucleus can enter from this direction with this rigidity. We repeat this backtracing process while
varying the value of Rigidity, and determine whether the trajectory fell into the forbidden region or
the allowed region. Rigidity is varied with the step of 0.01 in logarithmic scale from 1 GV to 50
GV. In the results of this calculation, we can observe the alternating appearance of the forbidden
region and allowed region which is known as the penumbra region. We process this penumbra
region according to the method described in Ref. [10], and calculate the effective cutoff rigidity,
which is then adopted as the final cutoff rigidity. For simplicity, we use the parameter 𝛽 = −1 in
the calculations described in Ref. [10].

At each observation point, the above calculation is performed for all zenith angles and azimuthal
angles, and the cutoff rigidity dome (Rc dome) is calculated as shown in Fig. 1. The hemisphere is
divided into 193 bins, and the cutoff rigidity Rc is calculated for each direction. In the azimuthal
direction, it is divided into 24 bins at 15-degree intervals. In the zenith angle direction, it is divided
into 6 parts with equal steps in the scale of cos 𝜃𝑑 (cos 𝜃). The colors in the figure represent the
values of Rc. This calculation was performed for 30 degrees north latitude and 135 degrees east
longitude. The east-west effect is clearly visible. In this analysis, the region within a zenith angle
of 45 degrees was used.

Figure 1: Rc dome at LAT 30N LON 135E.
Cutoff rigidity values on the east side are higher
than on the west side. The cutoff rigidity depends
on the incident direction.

Figure 2: Rc domes are calculated along the ISS
orbit. The cutoff rigidity depends on latitude,
longitude, and altitude. The latitude dependence
is the strongest. At higher latitudes, the cutoff
rigidity is generally smaller in all directions.

The calculation of such Rc domes was performed for each observation point along the ISS
orbit as shown Fig. 2. The analysis period is 68 months from October 2015 to May 2021, and the
UH trigger mode[11] periods have been picked up.

First, the longitude and latitude of observation points continuously recorded along the ISS orbit
were digitized at 1 degree intervals. These points were further grouped into sets of 10 points, and a
representative point was determined for each set. The calculations of the Rc dome were performed
for these representative points. The total number of observation points considered in the calculation
was about 25,000 points per month. The obtained Rc values were used in the subsequent analysis.
Note that the analysis has been done for the periods with solar wind observation data only because
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the geomagnetic field calculation needs actual solar wind data.

3.2 Observation data analysis

The analysis of flight data involved selecting data triggered by the UH trigger from the obser-
vation data collected over a period of 68 months, from October 2015 to May 2021. The UH trigger
mode requires signals above a certain threshold at the CHD and the top four layers of the IMC.

3.2.1 Charge determination

A cross-plot of the CHDx and CHDy signals with zenith angle correction was made for the
picked-up tracks as shown in Fig. 3(a). The main cosmic ray nuclei from oxygen to iron are clearly
seen. Tracks with a difference between CHDx and CHDy within 10% were selected (Fig. 3(b)), and
histograms were generated for CHDx and CHDy respectively. Fig. 3(c) shows the histogram for
CHDx. By reading the peak values for each nucleus component from this histogram, representative
values for each nucleus can be obtained.

Figure 3: For the all tracks triggered by the UH trigger; (a) the CHDy signal vs the CHDx signal. There
are some clusters corresponds to the major component of cosmic ray nuclei. (b) The tracks with CHDx and
CHDy signals within 10% of each other. (c) The histogram of CHDx signal for the tracks in the plot (b).
The horizontal axis shows log10(CHDx).

Figure 4: CHDx signal vs 𝑧2 with fitting curves by the
halo mode[12] for the 5 different Rc bins. This fitting
has been done for each of the 17 Rc bins.

The representative value of the CHD signal
is expected to depend on rigidity. Therefore, we
divided the Rc range from 100.50 GV to 101.30 GV
into 16 equal parts on a log scale and performed
charge determination for each bin. Additionally,
tracks with rigidity greater than 101.30 GV(19.95
GV) were grouped together as the 17th bin, and
charge determination was done similarly. For each
Rc bin, the representative values of CHDx and
CHDy corresponding to each nucleus component
were obtained. Then, for the conversion to charge,
the relationship between the CHD signal and the
atomic number squared (𝑧2) was fitted using the
halo model [12], which considers the quenching
effect in a scintillator. Fig. 4 shows examples of
plots of CHDx vs 𝑧2 for several Rc bins and the fitted curves. Using this curve, estimated charges
(Zx, Zy) corresponding to CHDx and CHDy were calculated for each Rc bin.
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Figure 5: Zy vs Zx plots for several Rc bins. El-
lipses for 1.2𝜎 are demonstrated. The tracks in the
1.2𝜎 ellipse have been selected as candidates for iron
nuclei.

Figure 6: The standard deviation for the estimated
charges by CHDx and CHDy. The horizontal axis
shows Rc values. Points correspond to each of the
17 Rc bins. 𝜎𝑧𝑦 is greater than 𝜎𝑧𝑥 . The last bin
represents the Rc range greater than 19.95 GV.

3.2.2 Calculation of the flux

Figure 5 shows a 2D histogram of Zy vs Zx for four Rc bins. One can see that the distribution
is centered around Z = 26.0. The resolution (1 𝜎) of the estimated charges from CHDx and CHDy
is shown in Fig. 6. They are in the range of 0.40-0.55 charge units except for the highest bin which
is for the tracks with Rc greater than 19.95 GV. The ellipse drawn in Fig. 5 represents the 1.2 𝜎

line. Iron candidates were selected inside an ellipse with minor and major semi-axes 1.2 𝜎𝑧𝑥 and
1.2 𝜎𝑧𝑦 , respectively, rotated clockwise by 45 degrees.

Figure 7: The integral rigidity spectrum of iron nu-
clei. It is obtained by counting the number of iron
nuclei for each Rc bin and dividing by solid angle
× observation time. The colors represent different
ranges of zenith angles.

Figure 8: The Differential rigidity spectrum of iron
nuclei converted from Fig. 7.
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For the adopted iron nucleus candidates, since the arrival time and direction are known, they
can be associated with Rc for each observation point and incident direction that was calculated
beforehand. By counting the number of iron nuclei in each Rc bin and simultaneously using the
number of solid angle bins and the sum of live time for the corresponding Rc bin, an integrated
rigidity spectrum was calculated. The results are shown in Fig. 7. The different colors represent
different ranges of zenith angles. This spectrum was converted to a differential spectrum as shown
in Fig. 8.

3.2.3 Detection efficiency

Figure 9: Tracking and Geometrical efficiency of
iron nuclei. It is calculated by the simulation code
Cosmos8.042 + Epics9.311. Two different interaction
models, the phits and the jam, are used for this calcu-
lation. The color shows different zenith angle ranges.
Larger zenith angles have more interaction, so the ef-
ficiency becomes lower.

For the absolute flux, geometric and tracking
efficiencies were calculated. The Cosmos + Epics
simulation code[15, 16] was used for this calcula-
tion. Iron nuclei were incident on the CALET de-
tector, and the detection efficiency was calculated
using the same UH trigger and track reconstruc-
tion algorithms as the observed data. The results
are shown in Fig. 9. The horizontal axis represents
the kinetic energy per particle, and the colors rep-
resent different ranges of zenith angles. For the
nuclear interaction model, the PHITS model[13]
is used for kinetic energies below 2 GeV/n(112
GeV/particle), and the JAM model[14] is used
for kinetic energies between 2 GeV/n and 100
GeV/n(112 GeV/particle and 5.6 TeV/particle).

From the plot, one can see that the efficiency
decreases with increasing zenith angle due to the
effects of nuclear interactions. Additionally, the
steep drop below 30 GeV is due to particles stopping in the upper 4 layers of the IMC due to
ionization losses. The geometric and tracking efficiency for vertical incident particles is about
98%. These detection efficiencies were applied to the previous differential spectrum to calculate
the absolute flux.

3.2.4 Systematic uncertainties

The systematic uncertainties were evaluated as follows. First, the fluctuation of flux due to
the precision of cutoff rigidity determination was studied. The influence of bin width in longitude
and latitude on the flux was about 8%. Additionally, the effect of the variation of Rc within the
solid angle bin was about 5%. Next, the effect of the charge identification cut was examined. In
the analysis, the charge identification cut was done at 1.2 𝜎. The flux variation was investigated
by applying cuts at 1.1 𝜎 and 1.3 𝜎, resulting in a variation of less than 2%. Furthermore, for
the checking of longterm stability, the data were divided into yearly segments, and the flux was
calculated for each year. The estimated variation was up to about 10%. At this stage, the systematic
uncertainty due to the interaction model is not considered yet.
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3.2.5 Absolute flux

Figure 10: The rigidity spectrum of the absolute flux
for iron nuclei obtained by this work(red points). The
detection efficiencies are taken into account for each
zenith angle range, then combined in one spectrum.
The error bars show the statistical errors and the col-
ored band indicates the quadrature sum of statistical
and systematic errors.

Figure 10 shows the rigidity spectrum of
the iron nuclei obtained by this work. The verti-
cal axis represents the differential absolute flux.
The error bars show the statistical errors and the
colored band indicates the quadrature sum of sta-
tistical and systematic errors. The systematic er-
rors include the sources described in the section
3.2.4. Flux has been calculated from 3 GV to
more than 20 GV. It seems that the rigidity spec-
trum follows a single power law with a power
index about -2.0.

The energy spectrum with kinetic energy
per nucleon from 1 GeV/n to 10 GeV/n is shown
in Fig. 11. The vertical axis represents the flux
multiplied by 𝐸2.6. The meaning of the error
bars and the colored band is the same as Fig. 10.

Figure 11: The energy spectrum of the absolute flux for iron nuclei. The horizontal axis shows the kinetic
energy per nucleon. The red points are the results obtained by this work. The error bars show the statistical
errors and the yellow zone indicates the quadrature sum of statistical and systematic errors.

In this analysis, only the events with a zenith angle within 45 degrees were analyzed using a limited
period of the observations until May, 2021. However, by including tracks with larger zenith angles
in the analysis, it is possible to increase the statistics up to larger values of Rc and extend the
spectrum towards higher rigidities.

In this energy range, the flux undergoes significant variations due to solar modulation. In order
to compare our results with other observations, it is necessary to quantitatively evaluate the solar
modulation effect for each observation period. This will be a future work.
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4. Conclusion

From the CALET observation data, we obtained the rigidity spectrum of the absolute flux for
iron nuclei in the range of 3 GV to more than 20 GV, which follows a single power law with a power
index about -2.0 by use of the geomagnetic effect. It has been converted to the energy spectrum
of the absolute flux in the energy region about 1 GeV/n to 10 GeV/n. We will increase the data in
the 7 GeV/n to 10 GeV/n range, and will extend the spectrum until it overlaps with the calorimeter
results in the future. Furthermore, in order to compare our results with those of other groups, we
will evaluate the effect of solar modulation for each observation period.
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