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The centre of the Milky Way galaxy, approximately 8 kpc from the Earth, is a peculiar region
due to its high density of stars, the resulting amount of stellar activity, and the presence of a
supermassive black hole. A puzzling observation is the ionisation rate in the Central Molecular
Zone which has been measured using different methods along several lines of sight. The estimated
average value over this central region is 3-4 orders of magnitude higher than the local ionisation
rate. As electromagnetic radiation can not penetrate the high gas column densities, cosmic rays are
assumed to be the main ionising agents in this region. This unusually high ionisation rate should
then reveal an equally high cosmic-ray density in this region. However, this excess is not reflected
in the gamma-ray emissions that constrain the high-energy cosmic-ray spectrum. In this work, we
explore the Galactic Centre ionisation scenario in which cosmic-ray protons and electrons are the
exclusive ionising agents. We use a custom particle-transport simulation to model the interactions
of cosmic rays with the surrounding medium and infer the necessary particle injection conditions.
We find that the injection spectrum needs to be very steep. We also find that a significant fraction
of the power in cosmic rays available in the entire galaxy needs to be injected in only the central
100 parsecs. We conclude that cosmic rays can not be the only ionising agents in the Galactic
Centre, thereby casting doubt on a hitherto unquestioned paradigm.
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1. Introduction

The Central Molecular Zone (CMZ) is a molecular ring centered around the Supermassive Black
Hole Sagittarius A*. It is modeled as a cylindrical region of height ∼ 90 pc and radius ∼ 120
pc. This region hosts the densest clouds in the Galaxy and a huge concentration of stars thereby
becoming an exciting laboratory to understand galactic dynamics.
One important ingredient for star formation that also drives interstellar chemistry is the 𝐻2 ionisation
rate. While this process can be caused by cosmic rays (CR) or UV photons, the former is usually
assumed to explain the ionisation in the CMZ. This is due to the inability of UV photons to
penetrate regions of very high density. The ionisation rate in the CMZ has been estimated to be
𝜁𝐶𝑀𝑍 ∼ 10−14s−1 using 𝐻+

3 absorption spectra by [21], [10] and [11], using Herschel observations
of 𝑂𝐻+, 𝐻2𝑂

+ and 𝐻3𝑂
+ by [14], using Meudon PDR code and 𝐻+

3 by [19], using Fe K𝛼 line
emissions and synchrotron emissions by [31], using 𝐻2𝐶𝑂 temperature by [9] and using 𝑃𝑂+

abundance by [26]. This value is not only 3-4 orders of magnitude higher than in other regions
of the Galaxy, it is also much higher than what is expected at such large column densities [24].
Although this could simply mean that the CR density is equally high in the CMZ, the gamma-ray
flux from high-energy CR observed from this region doesn’t corroborate this theory (Fig.1). The
expected CR spectrum is then supposed to have a significant enhancement in the low-energy domain.
In this study, we aim to find out if it’s possible to explain the high ionisation rates with CR particles.

Figure 1: Radial distribution of CRs, fig-
ure from [7] Top: Normalisation of the
CR proton spectrum at 30 GeV as a func-
tion of galactocentric distance as derived
by gamma-ray observations. Data from [1]
(red), [23] (green) and [4] (blue), AMS-02
[2] (dotted line). Bottom: CR ionisation
rate versus Galactocentric distance. Data
from [19] and [21] (green), [20] (blue), lo-
cal value from [24] (yellow region), renor-
malised profile predicted by [30] (dashed
line). The red bar shows the position of the
Sun.

We consider the ionisation of 𝐻2 molecules by CR protons and electrons. The different processes
of 𝐻2 ionisation are proton and electron impact (Eq.1) where "CR" can be a CR proton or electron,
and electron capture (Eq.2). These are immediately followed by the production of 𝐻+

3 ions (Eq.3).
Other processes like dissociation and double-ionisation are negligible.

𝐶𝑅 + 𝐻2 → 𝐶𝑅 + 𝐻+
2 + 𝑒− (1)

𝑝𝐶𝑅 + 𝐻2 → 𝐻 + 𝐻+
2 (2)

𝐻+
2 + 𝐻2 → 𝐻+

3 + 𝐻 (3)

2
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The cosmic-ray ionisation rate of 𝐻2, defined by [22] as the rate of production of 𝐻+
2 , can be written

as:

𝜁𝑝 (𝐻2) =
∫ 𝐸𝑚𝑎𝑥

𝐼

𝑓𝑝 (𝐸)𝑣𝑝 [1 + 𝜙𝑝 (𝐸)]𝜎𝑖𝑜𝑛
𝑝 (𝐸) 𝑑𝐸 +

∫ 𝐸𝑚𝑎𝑥

0
𝑓𝑝 (𝐸)𝑣𝑝𝜎𝑒.𝑐.

𝑝 (𝐸) 𝑑𝐸 (4)

𝜁𝑒 (𝐻2) =
∫ 𝐸𝑚𝑎𝑥

𝐼

𝑓𝑒 (𝐸)𝑣𝑒 [1 + 𝜙𝑒 (𝐸)]𝜎𝑖𝑜𝑛
𝑒 (𝐸) 𝑑𝐸 (5)

where 𝑓𝑘 is the CR spectrum of species k, 𝑣𝑘 is the particle velocity, 𝜎𝑖𝑜𝑛
𝑝 from [27], 𝜎𝑖𝑜𝑛

𝑒 from
[17] and 𝜎𝑒.𝑐

𝑝 from [22] are cross sections for ionisation by impact of protons, electrons and by
electron capture respectively and 𝜙𝑘 (𝐸) from [18] is the number of secondary ionisations produced
per primary ionisation by CR particle of species k. The quantity is integrated over the particle
kinetic energy 𝐸 ranging from the 𝐻2 ionisation potential 𝐼 = 15.603 eV to 𝐸𝑚𝑎𝑥 = 100 GeV.
The CR particle injection spectrum is assumed to be a continuous power-law in the Galactic Centre.
The CR steady-state spectrum 𝑓 can be obtained from the injection spectrum 𝑄 by solving the CR
transport equation:

𝜕 𝑓

𝜕𝑡
= 𝐷 (𝑝) 𝜕

2 𝑓

𝜕𝑟2 + 𝐷 (𝑝)
𝑟

𝜕 𝑓

𝜕𝑟
+ 𝐷 (𝑝) 𝜕

2 𝑓

𝜕𝑧2 + 1
𝑝2

𝜕

𝜕𝑝

(
𝑝2𝐷 𝑝𝑝 (𝑝)

𝜕 𝑓

𝜕𝑝

)
−𝑣𝑤

𝜕 𝑓

𝜕𝑧
+ 𝑝

3
𝜕𝑣𝑤

𝜕𝑧

𝜕 𝑓

𝜕𝑝
− 1

𝑝2
𝜕

𝜕𝑝

(
¤𝑝𝑝2 𝑓

)
+𝑄

(6)

where the first three terms describe the spatial diffusion of CR particles, the fourth term is the
momentum diffusion of CR, the fifth and sixth terms are advection and acceleration terms, the
seventh is the loss term ( ¤𝑝 > 0) and finally 𝑄 = 𝑄0

( 𝑝

𝑃𝑒𝑉

)−𝛽 is the CR injection spectrum. We use

𝐷 (𝑝) = 1030 ( 𝑝

PeV
)0.3 cm2.s−1, 𝐷 𝑝𝑝 (𝑝) =

𝑝2𝑣2
𝐴

9𝐷 (𝑝) ([29]) where 𝑣𝐴 is the Alfvén velocity, 𝑣𝑤 = 100
km.s−1 ([5]) and ¤𝑝 is the momentum loss function that includes ionisation and p-p interaction losses
for protons and ionisation, synchrotron, Bremsstrahlung and inverse Compton losses for electrons.
We have designed a custom particle transport simulation using finite difference methods and
operator-splitting to solve the transport equation. It is second-order accurate in time as we use
the Crank-Nicolson method. We try different power-laws for the CR injection spectrum and find the
corresponding steady-state spectrum using our simulation. This spectrum is then used to compute
the ionisation rate for different minimum energies. The methods and results for CR protons and
electrons are explained in the following before concluding on the possibility of a "cosmic-ray
ionisation rate" in the CMZ.

2. Ionisation by CR protons

The CR proton density in a remote region can be inferred from the products of their interaction
with the interstellar medium. High-energy CR protons interact with surrounding protons to produce
gamma rays through pion decay. According to [15], the relation between the spectrum of these
gamma rays Φ𝛾 and that of the CR protons 𝑓𝑝 is:

Φ𝛾 (𝐸𝛾) = 4𝜋𝑛𝐻
∫

𝑑𝜎

𝑑𝐸𝛾

(𝐸𝑝, 𝐸𝛾)
𝑣𝑝

4𝜋
𝑓𝑝 (𝐸𝑝) 𝑑𝐸𝑝 (7)
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where 𝑛𝐻 is the hydrogen number density, 𝐸𝑝 and 𝐸𝛾 are the proton kinetic energy and gamma-
ray energy respectively, 𝑑𝜎

𝑑𝐸𝛾
is the differential cross-section for gamma-ray emission from p-p

collisions.
We fit the observed gamma-ray flux with the expected spectrum from a given injection spectrum
(Fig.2) considering only spatial diffusion and losses. We find that 𝑄0, 𝑝 = 105 MeV−3.s−1 and
𝛽 = 4.2 are the best fit parameters for the proton injection spectrum. Since this injection spectrum
is obtained using the gamma-ray flux produced by protons above energy 𝐸∗

𝑝 = 0.28 GeV, the
steady-state spectrum obtained from the injection is also valid only above 𝐸∗

𝑝.
The main contribution to the ionisation process comes from protons below this energy. We first
try extrapolating the injection spectrum below 𝐸∗

𝑝 assuming the same power-law over all energies.
But the ionisation rate computed with this spectrum doesn’t exceed 10−16s−1. We then try adding
an extra component below 𝐸∗

𝑝 which is a steeper power-law of spectral index Δ. We increase Δ

until the ionisation rate reaches the observed values. We find that for Δ = 5.7, the ionisation rate
computed with 𝐸𝑝,𝑚𝑖𝑛 ∼ 1 keV is approximately 10−14s−1 (Fig.3). The CR power needed for such
an injection spectrum is 1040 ergs.s−1.
The minimum ionising energy of the proton, although higher than 𝐼, is very low. The range in
energy that contributes most to the ionisation rate is between 10 MeV and 10 GeV. But, increasing
𝐸𝑝,𝑚𝑖𝑛 also steepens the enhancement needed to reach high ionising rates when Δ = 5.7 is already
much steeper than expected spectra from current CR acceleration models. Moreover, the power
needed in the CMZ is 10% of the total CR power in the Galaxy.

Figure 2: Fit for gamma-ray flux from the Galactic Ridge (| 𝑙 |< 0.8◦ , | 𝑏 |< 0.3◦). Data from [3], [13],
[12] and [8].

4
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3. Ionisation by CR electrons

In the case of electrons, gamma rays can still be used to infer the density of CR electrons. CR
electrons produce gamma rays through relativistic Bremsstrahlung and inverse Compton scattering.
Following [16], the spectrum of gamma-rays resulting from IC emissions Φ𝐼𝐶 produced by an
electron spectrum 𝑓𝑒 and a seed photon field (T, 𝜅) where 𝑇 is the temperature and 𝜅 is the dilution
factor, is expressed in the following way:

Φ𝐼𝐶 (𝐸𝛾) =
∫

𝑑𝑁𝑖𝑠𝑜

𝑑𝜔𝑑𝑡
(𝐸𝛾 , 𝐸𝑒, 𝑇, 𝜅) 𝑓𝑒 (𝐸𝑒) 𝑑𝐸𝑒 (8)

To obtain the seed photon field, we have modelled the expected SED at the Galactic Centre [25] as
a sum of two grey-body emissions.
Following [6], the spectrum of gamma-rays resulting from relativistic Bremsstrahlung Φ𝐵𝑟𝑒𝑚

produced by an electron spectrum 𝑓𝑒 is as follows:

Φ𝐵𝑟𝑒𝑚(𝐸𝛾) = 𝑐𝑛𝐻

∫
𝜎𝐵𝑟𝑒𝑚(𝐸𝛾 , 𝐸𝑒) 𝑓𝑒 (𝐸𝑒) 𝑑𝐸𝑒 (9)

where 𝜎𝐵𝑟𝑒𝑚 is the related cross-section from [28].
But since observed gamma rays are almost entirely produced by CR protons, they only serve as an
upper limit for gamma rays produced by CR electrons. To obtain an optimistic estimation of the
CR electron density, we fit the observed gamma-ray spectrum assuming that all observed gamma
rays result from CR electrons (Fig.2). Since the injection source is taken to be the same for CR
protons and electrons, we expect the injection spectrum for both species to have the same spectral
index. Considering spatial diffusion and losses, 𝑄0, 𝑝 = 2 × 104 MeV−3s−1 is the best fit parameter
for the electron injection spectrum. Since this injection spectrum is obtained using the gamma-ray
flux produced by electrons above energy 𝐸∗

𝑒 = 1.3 GeV, the steady-state spectrum obtained from
the injection is also valid only above 𝐸∗

𝑒.
In the case of electrons also, the main contribution comes from below 𝐸∗

𝑒. Extrapolating the same
power-law to lower energies doesn’t give a considerable increase in ionisation rate. We add a
steeper power-law in the lower energies and obtain the observed ionisation rate for Δ = 5.0 and
𝐸𝑒,𝑚𝑖𝑛 ∼ 100 keV (Fig.3).
The minimum ionising energy of the electron, although higher than 𝐼, may also be too low. But,
increasing 𝐸𝑒,𝑚𝑖𝑛 poses the same problem as in the case of the protons. Δ = 5.0 is also much
steeper than expected spectra from current CR acceleration models. Moreover, the power needed
in the CMZ is again approximately 10% of the total CR power in the Galaxy.

4. Conclusion

In this work, we question the assumption that CR particles are responsible for the increased ionisation
rate in the CMZ. It is indeed possible to reach an ionisation rate above 10−14 s−1 with certain CR
spectra. However, the suitable injection spectra have spectral indices ≥ 5.0 in low-energies while
most "known" CR accelerators produce much harder spectra. We consider particles of energies
down to keV, but this energy may be too low. Increasing the minimum energy also increases the
steepness of the enhancement which is already extremely high. Either an unknown accelerator

5
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Figure 3: Left: Expected and enhanced spectra for CR protons and electrons. Right: Corresponding
ionisation rates as a function of the minimum ionising energy.

or an unknown mechanism is needed to explain such steep spectra. Another issue is the huge
cost of maintaining these spectra - assuming a continuous injection, a power in CR particles of
1040 ergs/s is necessary. This represents 10% of all the power in CR in the entire galaxy, required
to be present in the central ∼ 100 parsecs. This number is several orders of magnitude higher than
the photon-luminosity of the central supermassive black-hole but isn’t observable other than in the
ionisation rate. Considering the reasons mentioned above, cosmic-rays should ionise the CMZ but
can not be the exclusive ionising agents.
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