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Anisotropic diffusion is imperative in understanding cosmic ray diffusion across the Galaxy, the heliosphere,
and the interplay of cosmic rays with the Galactic magnetic field. This diffusion term contributes to the
highly stiff nature of the cosmic ray transport equation. To conduct numerical simulations of time-dependent
cosmic ray transport, implicit integrators (namely, Crank–Nicolson (CN)) have been traditionally favoured
over the CFL-bound explicit integrators in order to be able to take large step sizes. We propose exponential
methods to treat the linear anisotropic diffusion equation in the presence of advection and time-independent
as well as time-dependent sources. These methods allow us to take even larger step sizes that can substantially
speed-up the simulations whilst generating highly accurate solutions. In our subsequent works, we will use
these exponential solvers in the Picard code to study anisotropic cosmic ray diffusion and we will consider
additional physical processes such as continuous momentum losses and reacceleration.
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1. Introduction

The propagation of highly energetic charged particles in the Galaxy, known as cosmic rays (CRs) can be
mathematically described by the following equation [11]:

𝜕𝑢

𝜕𝑡
− ∇ · (D∇𝑢) + ∇ · ( ®𝑎𝑢) − 𝜕

𝜕𝑝

(
𝑝2𝐷 𝑝𝑝

𝜕
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(
𝑢

𝑝2

))
+ 𝜕
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3
(∇ · ®𝑣)𝑢

)
+

(
1
𝜏 𝑓

+ 1
𝜏𝑟

)
𝑢

= 𝑆(®𝑟, 𝑝, 𝑡), (1)

where 𝑢 ≡ 𝑢(®𝑟, 𝑝, 𝑡) corresponds to the CR density. CRs are transported from their sources to different parts
of the Galaxy primarily by means of diffusion. Anisotropic diffusion of CR particles becomes important
when the magnitude of the regular (ordered) magnetic field, locally, becomes (significantly) stronger that
of the turbulent fields. The significance of anisotropy of CR diffusion and the interplay physics between
(anisotropic) CR diffusion and the Galactic magnetic field has been poorly understood owing to the paucity
of CR observational data as well as the lack of our knowledge of the magnetic field of our Galaxy.

The Picard code [6] was developed to numerically solve the CR transport equation. Although it has been
optimised to solve the steady-state transport equation, it is well-suited to handle time-dependent problems.
We propose efficient solvers for the anisotropic diffusion problem which will be used in our future work to
study and efficiently treat anisotropic CR diffusion in the Galaxy using Picard.

Since CR transport is a diffusion-dominated problem, we consider a simplified version of Eq. (1). The
two-dimensional anisotropic diffusion equation in the presence of advection and sources reads

𝜕𝑢

𝜕𝑡
= ∇ · (D ∇ 𝑢) + ∇ · ( ®𝑎𝑢) + 𝑆(𝑥, 𝑦, 𝑡), (2)

where 𝑢 ≡ 𝑢(𝑥, 𝑦, 𝑡), ®𝑎 is the advection velocity, and 𝑆(𝑥, 𝑦, 𝑡) corresponds to spatially- and temporally-
varying source(s). The diffusion tensor can be written as

D =

[
𝐷𝑥𝑥 (𝑥, 𝑦) 𝐷𝑥𝑦 (𝑥, 𝑦)
𝐷𝑦𝑥 (𝑥, 𝑦) 𝐷𝑦𝑦 (𝑥, 𝑦)

]
,

where 𝐷𝑥𝑥 (𝑥, 𝑦) and 𝐷𝑦𝑦 (𝑥, 𝑦) are the diffusion coefficients along X– and Y–directions, respectively, and
𝐷𝑥𝑦 (𝑥, 𝑦) and 𝐷𝑦𝑥 (𝑥, 𝑦) are the off-diagonal terms that give rise to the mixed derivatives in the diffusion
equation.

2. Computing the matrix exponential and exponential-like functions: Leja method

We propose the use of the exponential quadrature methods [7] in combination with the method of
polynomial interpolation at Leja points [1] to integrate a linear differential equation with a time-dependent
forcing term, here, Eq. (2). The general form of an exponential quadrature rule reads

𝑢𝑛+1 = 𝑢𝑛 + Δ𝑡

𝑠∑︁
𝑖=1

𝑏𝑖 (AΔ𝑡) (A𝑢𝑛 + 𝑆(𝑡𝑛 + 𝑐𝑖Δ𝑡)), (3)

where A (= ∇ · (D ∇(·)) + ∇ · ( ®𝑎)) is the underlying matrix, 𝑠 corresponds to the number of stages, 𝑏𝑖 are
the weights, and 𝑐𝑖 are the quadrature nodes. The weights 𝑏𝑖 are given as [7]

𝑏1 (𝑧) = 𝜑1 (𝑧)

and

𝑏1 (𝑧) =
𝑐2

𝑐2 − 𝑐1
𝜑1 (𝑧) −

1
𝑐2 − 𝑐1

𝜑2 (𝑧),

𝑏2 (𝑧) =
−𝑐1

𝑐2 − 𝑐1
𝜑1 (𝑧) +

1
𝑐2 − 𝑐1

𝜑2 (𝑧)
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for 𝑠 = 1 and 𝑠 = 2, respectively. Choosing 𝑠 = 1 and 𝑐1 = 0.5, one arrives at the second-order (in time)
exponential midpoint rule (Eq. (4)), given as

𝑢𝑛+1 = 𝑢𝑛 + 𝜑1 (AΔ𝑡)
(
A𝑢𝑛 + 𝑆

(
𝑡𝑛 + 1

2
Δ𝑡

))
Δ𝑡. (4)

The fourth-order (in time) exponential Gauss quadrature can be obtained by choosing 𝑠 = 2, 𝑐1 = 1
2

(
1 − 1√

3

)
,

and 𝑐2 = 1
2

(
1 + 1√

3

)
in Eq. (3), which then reads

𝑢𝑛+1 = 𝑢𝑛 + 𝜑1 (AΔ𝑡)
(
A𝑢𝑛 +

(√
3 + 1
2

)
𝑆(𝑡𝑛 + 𝑐1Δ𝑡) +

(
1 −

√
3

2

)
𝑆(𝑡𝑛 + 𝑐2Δ𝑡)

)
Δ𝑡

+
√

3𝜑2 (AΔ𝑡) (𝑆(𝑡𝑛 + 𝑐2Δ𝑡) − 𝑆(𝑡𝑛 + 𝑐1Δ𝑡))Δ𝑡. (5)

The 𝜑𝑙 (𝑧) functions are defined recursively as 𝜑𝑙+1 (𝑧) = 1
𝑧

(
𝜑𝑙 (𝑧) − 1

𝑙!

)
, with 𝜑0 (𝑧) = exp(𝑧) being the

matrix exponential. We evaluate the sum of the 𝜑𝑙 (𝑧) functions in Eq. (5) as the exponential of an augmented
matrix [10]. This results in a significant reduction of the computational cost.

We evaluate these 𝜑𝑙 (𝑧) functions by interpolating them as polynomials on Leja points. As CR prop-
agation in the Galaxy is a diffusion-dominated problem, we consider only diffusion-dominated cases, i.e.
the eigenvalues of A are large and negative - they lie predominantly on the real axis. We approximate the
largest (in magnitude) real eigenvalue, say 𝛼, using the Gershgorin’s disk theorem, and assuming the smallest
eigenvalue to be 0, scale and shift the set of eigenvalues onto the set of Leja points (𝜉) on the arbitrary interval
[−2, 2]. The scaling (𝑐) and shifting (𝛾) factors are computed as 𝑐 = 𝛼/2 and 𝛾 = −𝛼/4, respectively. Now,
we interpolate the function exp((𝑐 + 𝜉𝛾)Δ𝑡) or 𝜑((𝑐 + 𝜉𝛾)Δ𝑡) on the set of Leja points, and the (𝑚 + 1)th

term of the polynomial, so formed, is given by

𝑝𝑚+1 = 𝑝𝑚 + 𝑑𝑚+1 𝑦𝑚+1,

𝑦𝑚+1 = 𝑦𝑚 ×
(
𝑧 − 𝑐

𝛾
− 𝜉𝑚

)
,

where 𝑑𝑚 are the coefficients of the polynomial determined using divided differences. We use the open-source
LeXInt library [3] to evaluate the matrix exponential and 𝜑𝑙 (𝑧) functions using the Leja method.

3. Test examples of Anisotropic Diffusion

To study the performance of our proposed method, we consider three different magnetic field configu-
rations. The first configuration is the concentric circles or rings [2, 5, 8, 9], where the diffusion coefficients
depend on the spatial coordinates as

D𝑅 =

[
𝑦2 −𝑥𝑦
−𝑥𝑦 𝑥2

]
. (6)

As the Milky Way is a spiral Galaxy, we consider two different spiral magnetic field configurations given as
follows:

D𝑆1 =

[
(𝑥 + 𝑦)2 −𝑥2 − 𝑥𝑦

−𝑥2 − 𝑥𝑦 𝑥2

]
D𝑆2 =

[
(𝑥 + 4𝑦)2 −𝑥2 − 4𝑥𝑦
−𝑥2 − 4𝑥𝑦 𝑥2

]
. (7)

We consider several scenarios to show the superiority of our proposed solvers over the commonly-used
solver for the time-dependent CR transport equation - the CN solver.

• Case I: Anisotropic diffusion along a ring, where the magnetic field configuration is given by Eq. (6).

3
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Figure 1: Anisotropic diffusion of an initial Gaussian distribution along the field lines where the magnetic field
configuration is in the form of concentric circles (top) and spiral 2 (bottom). We consider two time-independent sources
in the case of diffusion along the spirals.

• Case II: Anisotropic diffusion along a spiral, where the magnetic field configuration is given by Eq.
(7) (spiral 2), with advection (®𝑎 = 𝑖 + 𝑗) and time-independent sources, given as,

𝑆(𝑥, 𝑦) = 0.1 + 30 exp
(
− (𝑥 + 0.6)2 + (𝑦 − 0.75)2

2.5 · 10−2

)
+ 40 exp

(
− (𝑥 − 0.75)2 + (𝑦 + 0.8)2

3 · 10−2

)
. (8)

• Cases III and IV: Anisotropic diffusion along two different spiral magnetic field configurations (Eq.
(7)), with advection and the following time-dependent sources:

𝑆𝐴(𝑥, 𝑦, 𝑡) = 100 exp
(
− (𝑥 − 0.25)2 + (𝑦 − 0.25)2

1.5 · 10−2

)
exp (−10 |𝑡 − 0.1|)

𝑆𝐵 (𝑥, 𝑦, 𝑡) = 70 exp
(
− (𝑥 − 0.4)2 + (𝑦 + 0.4)2

2.5 · 10−2

)
exp (−5 |𝑡 − 0.3|)

𝑆𝐶 (𝑥, 𝑦, 𝑡) = 50 exp
(
− (𝑥 + 0.6)2 + (𝑦 − 0.6)2

1.5 · 10−2

)
exp (−7.5|𝑡 − 0.6|)

𝑆(𝑥, 𝑦, 𝑡) = 𝑆𝐴(𝑥, 𝑦, 𝑡) + 𝑆𝐵 (𝑥, 𝑦, 𝑡) + 𝑆𝐶 (𝑥, 𝑦, 𝑡). (9)

In Fig. 1, we illustrate anisotropic diffusion of an initial Gaussian distribution along a ring and along
a spiral in the presence of two time-independent sources. One can clearly see the two sources pop up once
the initial distribution has been smeared out enough such that it is roughly as intense as the two sources. In
Fig. 2, we consider anisotropic diffusion and advection (®𝑎 = 𝑖 + 𝑗 for spiral 1 and ®𝑎 = 𝑖 + 2 𝑗 for spiral 2)
of the distribution function with time-dependent sources for two different spiral field configurations. This is
reminiscent of CR sources (say, supernovae) injecting CRs at different times and positions in the Galaxy.

Fig. 3 contrasts the performance of computing the matrix exponential directly using the Leja method
with that of CN for anisotropic diffusion on a ring (at 𝑇 = 0.75) and a spiral (at 𝑇 = 0.85, including advection
and time-independent sources). We consider tolerances (i.e., desired accuracy of the solutions) in steps of an
order of magnitude from 10−2 to 10−10, and plot the resulting error incurred as a function of a proxy of the
computational runtime, here, the number of matrix-vector products, as that constitutes the most expensive

4
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Figure 2: Anisotropic diffusion along spiral magnetic field configuration (spiral 1 - top and spiral 2 - bottom). We
consider three time-dependent sources (Eq. (9)) in each of these cases.

103 104 105

Matrix-vector products
 (Proxy of Comp(tationa  Cost)

10−8

10−6

10−4

10−2

 1
 e

rro
r

Ring
Δt = tF  (Leja)

104 105 106

Matrix-vector products
 (Proxy of Comp(tationa  Cost)

10−10

10−8

10−6

10−4

10−2
Spira 

10000 ⋅ tCFL  (Leja)

Leja 10 ⋅ tCFL  CN 50 ⋅ tCFL  CN 500 ⋅ tCFL  CN

Figure 3: Left: Work-precision diagram, for diffusion along a ring, at T = 0.75 [4]. Right: Work-precision diagram, for
diffusion (+ advection + sources) along a spiral, at T = 0.85.

part of the algorithm. The Leja method (blue circles) is significantly cheaper than the CN solver owing to
its ability to take substantially larger step sizes than its counterpart. In the case of diffusion along a ring,
one can take step sizes as large as the total simulation time. This results in performance improvements
from a factor of 5 for intermediate tolerances up to almost two orders of magnitude for stringent tolerances
(highly accurate solutions). Similar results are obtained for diffusion along a spiral. The additional physical
phenomena, i.e. advection and sources, imposes practical (or numerical) restrictions on the permissible step
sizes. Nevertheless, one is able to choose step sizes as large as 10000 times the CFL time step size, thereby
obtaining speedups of about an order of magnitude.
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Figure 4: Work-precision diagram, for diffusion along spiral 1, for anisotropic diffusion, advection and time-dependent
sources at 𝑇 = 0.10 (top) and 𝑇 = 0.30 (bottom).

In the case of time-dependent sources, one can no longer obtain the exact solution in time. The time-step
sizes are restricted by the relevant physical processes at play. In Figs. 4 and 5, we compare the performance
of the exponential midpoint (Eq. (4)) and exponential Gauss (Eq. (5)) quadrature methods, where the
𝜑𝑙 (𝑧) functions are approximated by the Leja method, with the CN method for 𝑇 = 0.10 (top panel) and
𝑇 = 0.30 (bottom panel). Exponential Gauss quadrature (blue circles), being fourth order convergent, is
more accurate than exponential midpoint quadrature (red diamonds) and CN (green pluses), for all considered
configurations. For small step sizes (Δ𝑡 = 10 ·Δ𝑡CFL), the CN solver needs fewer iterations per time step, and
therefore, proves to be cheaper (by a factor of 2 - 3) than the exponential midpoint method and up to a factor
of 4 - 5 than the exponential Gauss quadrature.

For larger step sizes (Δ𝑡 = 100 · Δ𝑡CFL and 500 · Δ𝑡CFL), CN suffers from a significant increase in the
computational runtime as well as a significant loss in accuracy. Exponential midpoint quadrature suffers
a similar fate in accuracy, however, it converges relatively rapidly as compared to the CN solver. This
difference in the rate of convergence can range somewhere between a factor of 2 to 10 depending on the
specifications of the problem under consideration. Both of these methods, being second-order convergent,
rapidly reaches a saturation in the error incurred for large step sizes, irrespective of the prescribed tolerance.
Exponential Gauss quadrature is clearly superior to both the second-order solvers for large step sizes - it can
yield highly accurate solutions, an improvement of a factor of 3 to several orders of magnitude, depending

6
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Figure 5: Work-precision diagram, for diffusion along spiral 2, for anisotropic diffusion, advection and time-dependent
sources at 𝑇 = 0.10 (top) and 𝑇 = 0.30 (bottom).

on the simulation time and other parameters, for similar computational effort.

4. Conclusions and Outlook

We have shown that exponential methods have better performance in terms of computational runtimes
as well as accuracy than the Crank-Nicolson solver, which has been traditionally used in Picard and
GalProp for treating the time-dependent CR transport equation. Even though we have only considered
two-dimensional problems in this work, we fully expect that our proposed solvers would show similar
improvements in performance, both in terms of computational cost and the accuracy of the solutions, for the
full four-dimensional CR transport equation.

In the near future, we will append LeXInt to Picard to study CR transport in the Galaxy using the
exponential quadrature methods in combination with the Leja scheme. Yet another approach would be to
penalise the anisotropic diffusion term [4] - the stiff terms would be treated implicitly whilst the non-stiff
term would be solved explicitly. We will also consider continuous energy losses as well as reacceleration
whilst investigating the impact of anisotropic CR diffusion in the Galactic magnetic field using Picard.
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