

Old and new anomalies in charm

Rigo Bause, a Hector Gisbert, b Gudrun Hiller, a Tim Höhne, a,* Daniel F. Litim c and Tom Steudtner a,d

```
<sup>a</sup>Department of Physics, TU Dortmund University,
Otto-Hahn-Str. 4, D-44221 Dortmund, Germany
```

Via F. Marzolo 8, 35131 Padova, Italy

Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova,

Via F. Marzolo 8, 35131 Padova, Italy

^c Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH, U.K.

^dDepartment of Physics, University of Cincinnati,

Cincinnati, OH 45221, USA

E-mail: rigo.bause@tu-dortmund.de, hector.gisbert@pd.infn.it,

 $\verb|gudrun.hiller@tu-dortmund.de|, tim.hoehne@tu-dortmund.de|,$

d.litim@sussex.ac.uk, tom2.steudter@tu-dortmund.de

The recent LHCb determination of the direct CP asymmetries in the decays $D^0 \to K^+K^-, \pi^+\pi^-$ hints at a sizeable breaking of two approximate symmetries of the SM: CP and U-spin. We aim at explaining the data with BSM physics and use the framework of flavorful Z' models. Interestingly, experimental and theoretical constraints very much narrow down the shape of viable models: Viable, anomaly-free models are electron- and muon-phobic and feature a light Z' of 10-20 GeV coupling only to right-handed fermions. The Z' can be searched for in low mass dijets or at the LHC as well as dark photon searches. A light Z' of \sim 3 GeV or \sim 5-7 GeV can moreover resolve the longstanding discrepancy in the $J/\psi, \psi'$ branching ratios with pion form factors from fits to $e^+e^- \to \pi^+\pi^-$ data, and simultaneously explain the charm CP asymmetries. Smoking gun signatures for this scenario are Υ and charmonium decays into pions, taus or invisbles.

ArXiv ePrint: 2309.04513 Report number: DO-TH 23/14

21st International Conference on B-Physics at Frontier Machines (Beauty2023) 3-7 July, 2023
Clermont-Ferrand, France

*Speaker

^b Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova,

1. Introduction

Recently, LHCb determined the direct *CP* asymmetries in $D^0 \to \pi^+\pi^-$, K^+K^- decays to [2]

$$a_{K^+K^-}^d = (7.7 \pm 5.7) \cdot 10^{-4}, \qquad a_{\pi^+\pi^-}^d = (23.2 \pm 6.1) \cdot 10^{-4}.$$
 (1)

 $a^d_{K^+K^-} = (7.7 \pm 5.7) \cdot 10^{-4}, \qquad a^d_{\pi^+\pi^-} = (23.2 \pm 6.1) \cdot 10^{-4}. \tag{1}$ These results are puzzling for two reasons. Firstly, a SM explanation of $a^d_{\pi^+\pi^-}$ requires higher-order contributions h to be enhanced over the tree-level amplitude t by $\frac{h}{t} \sim 2$. This is significantly larger than the estimations from [3, 4]. Secondly, the fit implies a 2.7σ violation of the approximate SM U-spin symmetry [5], that is $a_{\pi^+\pi^-}^d = -a_{K^+K^-}^d$, which is a factor ~ 4 larger than the naively expected U-spin breaking in the SM of $O\left(\frac{m_s - m_d}{\Lambda_{QCD}}\right) \sim 30\%$, see Fig. 1. This constitutes the U-spin-*CP* anomaly in charm, which we aim to explain with a flavorful Z' model [1].

Figure 1: The U-spin-*CP* anomaly in charm, showing LHCb bounds (gray & green), the best fit region (orange) and the SM expectation including ≤ 30% U-spin breaking (red cone). Coloured lines relate to benchmark models of [1].

Figure 2: Z' contribution to the decay $D^0 \rightarrow \pi^+\pi^-$.

Explaining the anomaly with a flavorful Z'

The Z' contributes to the CP asymmetries in $D^0 \to \pi^+\pi^-, K^+K^-$ decays via Fig. 2 as

$$a^d_{\pi^+\pi^-,K^+K^-} = \frac{g_4^2}{M_{Z'}^2} \Delta \widetilde{F}_R \left[c_{\pi,K} F_{Q_{1,2}} + d_{\pi,K} F_{d_{1,2}} \right] \tag{2}$$
 where g_4 and M_Z' are the $U(1)'$ gauge coupling and Z' mass, respectively, and $c_{\pi,K}, d_{\pi,K}$ are

hadronic parameters. Moreover, $\Delta \widetilde{F}_R = \sin \theta_u \cos \theta_u (F_{u_2} - F_{u_1})$ contains the right-handed c-u mixing angle θ_u . Explaining the CP data (1) requires the U(1)'-quark charges to obey $F_{u_2} \neq F_{u_1}$ and $|F_{d_1}| \gg |F_{d_2}|$ due to the hierarchy $a^d_{\pi^+\pi^-} \gg a^d_{K^+K^-}$ (1), along with $\theta_u \neq 0$ and sizeable relative weak and strong phases.

The shape of viable benchmark models in Tab. 1 is further narrowed down by demanding anomaly cancellation which might require adding U(1)' charged right-handed neutrinos v_R . Additional constraints arise from Kaon FCNCs, (semi-)leptonic and (semi-)invisible $D \to (\pi) \ell^+ \ell^-$, $\nu\nu$ decays as well as Drell-Yan searches. Viable models also predict $A_{CP}(\pi^0\pi^+) \simeq A_{CP}(\pi^0\pi^0) \simeq +10^{-3}$.

Moreover, strong constraints from D-mixing combined with CP data (1) surpisingly point to a sub-electroweak Z' mass of a few $\times 10$ GeV. The Z' coupling to d-quarks leads to collider signals in low mass dijets with initial state radiation, resulting in a mass bound of $M_{Z'} \lesssim 20$ GeV [6].

Model	F_{Q_i}			F_{u_i}			F_{d_i}			F_{L_i}			F_{e_i}			F_{ν_i}		
BM III	0	0	0	0	-1	0	1	0	0	0	0	0	0	0	1	0	0	-1
BM IV	0	0	0	$-\frac{985}{1393}$	985 1393	0	1	0	-1	0	0	0	$\frac{1}{1393}$	0	$-\frac{1}{1393}$	F_{ν}	$-F_{\nu}$	0

Table 1: Benchmarks for viable, anomaly-free U(1)' extensions of the SM+3 ν_R explaining $a_{\pi^+\pi^-,K^+K^-}^d$ (1).

3. A hadrophilic Z' of O(10 GeV)?

Light Z' models are also constrained by dark photon searches [7], which imply a strict bound on lepton charges of $|F_{L_{1,2},e_{1,2}}| \leq 10^{-3}|F_{d_1}|$. Hence, the Z' has to be leptophobic.

The Z' can also mediate quarkonia decays. In BM IV, mass bounds arise from $\Upsilon(1s)$ decays via the b_R -coupling. Moreover, the Z' contributes to charmonium decays $\psi_i \to Z'^* \to \pi^+\pi^-(\tau^+\tau^-,\nu\nu)$ with $\psi_i=J/\psi,\psi'$, see Fig. 3. In particular, the electrophobic Z' enhances $\mathcal{B}(\psi_i\to\pi^+\pi^-)$ with respect to $\mathcal{B}(\psi_i\to e^+e^-)$, see Fig. 4. Thereby, for $M_{Z'}\simeq 3$ GeV (5-7 GeV) in BM III (BM IV) the model is able to resolve the longstanding discrepancy between the pion form factor $F_\pi(q^2)$ extracted from $J/\psi\to\pi^+\pi^-$ [8] and $e^+e^-\to\pi^+\pi^-$ [9]. In this case, in BM III the Z' mass range of $M_{Z'}\lesssim 2.2$ GeV allowed by $\mathcal{B}(\psi'\to\tau^+\tau^-)=(3.1\pm0.4)\cdot 10^{-3}$ [10] almost coincides with the pion form factor window, whereas $\mathcal{B}(J/\psi\to nothing)<7\cdot 10^{-4}$ [10] implies that the decay to BSM neutrinos should be kinematically forbidden by $M_V>M_{J/\Psi}/2$ which can be achieved e.g. via the Dirac inverse see-saw mechanism.

Figure 3: Z' contribution to the charmonia decays $J/\psi, \psi' \to \pi^+\pi^-$.

Figure 4: Constraints from charmonium decays. Horizontal red (blue) bands denote J/ψ (ψ') data [8] using $F_{\pi}(q^2)$ from [9]. Curves correspond to predictions in BM III including experimental uncertainties from (1). The SM prediction corresponds to the horizontal gray line.

4. Conclusion

Recent charm data (1) imply sizeable violation of CP and U-spin, possibly hinting new physics. We obtain a viable explanation from a flavorful Z' boson which is light of $O(10~{\rm GeV})$, leptophobic and couples only to $SU(2)_L$ singlets. Moreover, a Z' of a few GeV can resolve the pion form factor discrepancy between $e^+e^- \to \pi^+\pi^-$ and $J/\psi \to \pi^+\pi^-$ extractions. In this scenario, hadronic, tauonic and invisible quarkonia decays are smoking gun signatures of the model. Longstanding anomalies such as the large isospin breaking between $\psi(3770) \to D^+D^-$ and $D_0\bar{D}_0$ [10] could potentially also be addressed.

Acknowledgments

TH would like to thank the organizers for the invitation to such a stimulating conference. This work is supported by the *Studienstiftung des deutschen Volkes* (TH), the *Bundesministerium für Bildung und Forschung (BMBF)* under project number 05H21PECL2 (HG), and the Science and Technology Research Council (STFC) under the Consolidated Grant ST/T00102X/1 (DFL).

References

- [1] R. Bause, H. Gisbert, G. Hiller, T. Höhne, D. F. Litim and T. Steudtner, *U-spin-CP anomaly in charm*, *PRD* **108** (2023) 035005 [hep-ph/2210.16330].
- [2] LHCb collaboration, *Measurement of the time-integrated CP asymmetry in* $D^0 \rightarrow K^-K^+$ *decays*, (2022) [hep-ex/2209.03179].
- [3] A. Khodjamirian and A. A. Petrov, *Direct CP asymmetry in D* $\rightarrow \pi^-\pi^+$ *and D* $\rightarrow K^-K^+$ *in QCD-based approach*, *PLB* **774** (2017) 235–242 [hep-ph/1706.07780].
- [4] A. Pich, E. Solomonidi and L. Vale Silva, *Final-state interactions in the CP asymmetries of charm-meson two-body decays*, *PRD* **108** (2023) 036026" [hep-ph/2305.11951].
- [5] S. Schacht, A *U-spin anomaly in charm CP violation*, *JHEP* **03** (2023) 205 [hep-ph/2207.08539].
- [6] CMS collaboration, Search for Low-Mass Quark-Antiquark Resonances Produced in Association with a Photon at $\sqrt{s} = 13$ TeV, PRL 123 (2019) 231803 [hep-ex/1905.10331].
- [7] LHCb collaboration, Search for $A' \rightarrow \mu^{+}\mu^{-}$ Decays, PRL **124** (2019) 041801 [hep-ex/1910.06926].
- [8] C. Bruch, A. Khodjamirian and J. H. Kuhn, *Modeling the pion and kaon form factors in the timelike region*, *EPJC* **39** (2005) 41–54 [hep-ph/0409080].
- [9] S. Cheng, A. Khodjamirian, and A. V. Rusov, *Pion light-cone distribution amplitude from the pion electromagnetic form factor*, *PRD* **102** (2020) 074022 [hep-ph/2007.05550].
- [10] Particle Data Group, Review of Particle Physics, PTEP 2022 (2022) 083C01.