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Slow organic and water-based liquid scintillators are currently developed and characterized for
future large-scale neutrino experiments such as Theia. One goal of these new scintillators is to
separate Cherenkov light from scintillation light in a detector. By this, the spatial information
improved while keeping the excellent energy resolution of proven organic mixtures. This contribu-
tion focuses on scintillation time profile studies of novel liquid scintillators. We performed liquid
scintillator characterization experiments using a pulsed neutron beam at the CN accelerator of
INFN Laboratori Nazionali di Legnaro. At different quasi-monoenergetic neutron beam energies,
ranging from 1.86 MeV to 3.86 MeV, the fluorescence time profile of recoil protons was recorded.
Differences in the time profiles after gamma and neutron excitation open the window to perform
pulse shape discrimination and therefore advance the ability to distinguish the neutrino signal
from backgrounds.
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1. Introduction

For future large-scale neutrino experiments such as Theia [1], two approaches are currently under
investigation to separate Cherenkov radiation from scintillation light [2]. While the one is via the
development of water-soluble scintillators, so-called water-based liquid scintillators (WbLSs), in
which the ratio of Cherenkov light to the otherwise dominant fraction of scintillation is increased,
the second is via the formulation of so-called slow organic scintillators, in which the characteristic
fluorescence times are intentionally retarded so that separation via timing using fast photosensors
becomes possible. In this work the combination of conventional solvents such as linear alkylben-
zene (LAB) and diisopropylnaphthalene (DIN), and fluors such as 2,5-diphenyloxazole (PPO) are
used to develop such novel detection media.

2. Experimental Setup

Several glass spheres, each with a volume of approximately 150 mL, are filled with liquid scintilla-
tors (LS) and protected by nitrogen atmospheres. Figure 1 illustrates the experimental setup at the
end of the beamline of the CN accelerator at INFN Legnaro. The experiment uses the widely-used
technique of time-correlated single photon counting (TCSPC) such as in [3, 4].
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Figure 1: Illustration of the scintillation time profile experiment at the end of the beamline of the CN Van
de Graaff accelerator at INFN Legnaro.

Inside a light-tight box two near photomultiplier tubes (PMTs) (Ch. 0 & Ch. 1) monitor one LS
glass vessel and will detect multi-photon pulses from one excitation of the LS and whose coincidence
provides the start signal of a time measurement. A third PMT (Ch. 2) is placed behind an adjustable
aperture and in a certain distance to ensure only the detection of single photon signals from the same
excitation, which provides the stop signals of the time measurements. Signals are only recorded
when Ch. 2 detects a signal within a gate created by the start signal. Recording many of these
time measurements allows to obtain the scintillation time profile. The trigger logic and readout
electronics comprises a flexible and fast NIM system, which can be adjusted for efficiently working
with radioactive sources such as 137Cs or at particle accelerators to include beam trigger signals.
The system is adjusted that time differences of the start and stop signals are possible up to 650 ns.

At the CN accelerator monoenergetic pulsed proton beams with energies from 3.5 MeV up
to 5.5 MeV can be guided onto a thin lithium target. In this nuclear reaction neutrons as well as
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beam correlated gammas will be created, which can enter the time profile experiment and interact
with protons and electrons of the scintillator, respectively. The experiment is placed around 1.5 m
away from the lithium target to have a sufficiently large distance for time-of-flight measurements of
the beam bunches.

3. Results and Discussion

As Figure 2a shows neutron data can be distinguished from beam gammas using the time information
of the beam bunches. The recorded data is going through several quality checks such as ensuring
the coincidence of signals of Ch. 0 & Ch. 1 being within a few nanoseconds and containing
multi-photoelectrons while signals of Ch. 2 only contain single photoelectrons as Figure 2b shows.
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Figure 2: (a) Neutron and gamma data can be selected using the time-of-flight information. (b) Quality cuts
on the pulse integral spectrum of the far PMT (Ch. 2) are applied to ensure single photoelectron charges.

Figure 3 shows the recorded time profiles of liquid scintillators excited by recoil electrons
induced by a 137Cs source and recoil protons induced by neutron beams. While Figure 3a shows
the fast relaxating time profiles of a water-based liquid scintillator, Figure 3b shows the slowly
relaxating time profiles of a slow organic LS. Note that the secondary bump to the right of the
maximum of the distribution is due to unavoidable late pulses in the far PMT (Ch. 2). The time
profiles of both LSs are clearly different when excited by different particles. This different emission
of light over time demonstrates the potential to perform pulse shape discrimination with these novel
LSs in next-generation neutrino detectors. Figure 3c shows the time profiles of different slow
mixtures. Samples containing larger amounts of PPO relaxate faster as expected [3]. Qualitatively,
the mixture containing 90 % LAB and 10 % DIN with 2 g/L PPO is as slow as the mixture containing
only LAB with 0.5 g/L PPO. The moderate admixture of DIN to LAB is therefore responsible for
the retarded light emission and proves that the combination of conventional solvents and fluors can
be used to develop slow media.
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(a) Water-based liquid scintillator
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(b) Slow organic liquid scintillator
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(c) Comparison of slow organic LSs

Figure 3: The scintillation time profiles after particle excitation by recoil protons (red) and recoil elec-
trons (blue) of water-based liquid scintillators (a) as well as slow organic liquid scintillators (b) are clearly
distinguishable. (c) Comparison of time profiles of different slow LS mixtures.

4. Conclusion and Outlook

TCSPC together with a pulsed neutron beam has shown for the first time that the novel slow organic
and water-based LSs indeed have PSD capabilities. Using a pico-second laser system the three PMTs
were characterized at SPE intensity concerning gains and transit time spectra. This allows to build an
instrumental response function (IRF) taking into account the late pulse contribution of the far PMT.
By that, the data can be properly fit by the convolution of the IRF with a scintillation model that is
similar to [5]. Results for the slow LSs will be presented in a future publication [6].
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