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of a weakly coupled quark-gluon plasma, observing how the thermal scale affects the region of
phase space, which gives rise to these corrections. We furthermore clarify how the region of phase
from which these corrections are borne is situated with respect to that from which the classical
corrections arise at relative order O(g). This represents a significant step towards our eventual goal
of understanding which class of corrections dominate, thereby pushing forward our quantitative
grasp on the phenomenon of jet quenching in heavy-ion collisions.
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1. Introduction

In the context of heavy-ion collisions, jets provide an ideal hard probe of the quark-gluon
plasma (QGP). Through interacting with the QGP, they receive momentum kicks in the directions
transverse to their propagation – transversemomentumbroadening. This broadening can be captured
by the transverse momentum broadening coefficient, q̂ = 〈k2

⊥〉/L, which specifies the transverse
momentum picked up per unit length, L by a hard parton propagating through the QGP. See
the recent reviews on jets in heavy-ion collisions [1] or extractions of q̂ from data [2] for more
information.

For a weakly coupled QGP, q̂ can be expressed in terms of the transverse scattering kernel

q̂(µ) =
∫ µ d2k⊥
(2π)2

k2
⊥C(k⊥), C(k⊥) ≡ (2π)2

dΓ
dk2
⊥

, (1)

where dΓ
dk2
⊥

is the rate for a hard parton with energy, E � T , the temperature of the plasma,
propagating along the z direction to pick up k⊥. The cutoff, µ is installed so as not to include larger
momentum scatterings, which include two hard partons in the final state. See App. A of [3] for our
conventions.

At leading order (LO) in g, q̂ receives contributions from the hard (T) [4] and soft (gT) [5]
scales, which give rise to the parametric form (up to logarithms) q̂ ∼ g4T3. The soft contribution
is cut off in the IR by dynamical screening, implemented through Hard Thermal Loop Effective
Theory (HTL) resummation [6]. NLO corrections also come from the soft scale [7]. Ultrasoft
(g2T) modes contribute at O(g2), for which the perturbative expansion breaks down. We refer to
these NLO and NNLO contributions as classical corrections: they are distributed on the T/ω IR
tail of the Bose-Einstein distribution, nB(ω) and are therefore sourced by the Matsubara zero-mode.

Caron-Huot [7] demonstrated that one may compute the zero-mode contribution to C(k⊥) in
Electrostatic QCD (EQCD) [8], meaning that one can bypass the somewhat cumbersome HTL
computation. More importantly, as a theory of static modes, EQCD is amenable to study using
three-dimensional lattice simulations, which can thus provide a non-perturbative evaluation of
C(k⊥), summing contributions from the soft and ultrasoft scales to all orders [9, 10]. Recently, the
impact of these classical corrections on the in-medium splitting rate was assessed [11, 12] and found
to be very relevant. A similar program is well underway for the non-perturbative determination of
classical corrections to the asymptotic mass [13–15].

These classical corrections are at odds with doubly-logarithmically enhanced radiative, quan-
tum corrections, appearing at O(g2), first identified in [16, 17]. There, the leading enhancement is
∼ ln2 Lmed/τmin, with Lmed the length of the medium and τmin ∼ 1/T the minimum formation time
of the associated radiation. This potentially large double-logarithm can be resummed [18], with the
evolution equations solved numerically in [19, 20]. Interestingly, they also arise in the context of
double gluon emission [18, 21], implying that these logarithms are subject to a certain universality.

These corrections come from the single scattering regime where bremsstrahlung is sourced
by a single scattering with the medium. This is in contrast to the multiple scattering regime,
where the bremsstrahlung’s formation time, τ is long enough so that it is coherently triggered by
multiple collisions, accounted for through LPM resummation. In [3], we compute these doubly-
logarithmically enhanced corrections in the context of a weakly coupled QGP, carefully analysing
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Figure 1: Depiction of bounds from the integration in Eq. (3). The (b) boundary is defined by τ =
√

k+/q̂0
and the (a) boundary by τ = k+/µ2. Figure taken from [3].

how the thermal scale deforms the region of phase space from which the double-logarithms emerge.

2. Double Logarithmic Corrections and the Thermal Scale

The correction from [16] emerges in the standard dipole picture

δq̂[16, 17](µ) = 4αsCR q̂0

∫ µ d2k⊥
k2
⊥

∫
dk+

k+
, (2)

where k+ ≡ k2
⊥τ is the energy of the bremsstrahlung and q̂0 is the LO transverse momentum

broadening coefficient, stripped of the Coulomb logarithm as is done in the harmonic oscillator
approximation (HOA). Here we can explicitly see that one of the logarithms comes from a soft,
dk+/k+ divergence, with the other coming from a collinear, d2k⊥/k2

⊥ divergence. For what follows,
it turns out to be more convenient to work with τ and k+

δq̂[16, 17](µ) =
αsCR

π
q̂0

∫ µ2/q̂0

τmin

dτ
τ

∫ µ2τ

q̂0τ2

dk+

k+
=
αsCR

2π
q̂0 ln2 µ2

q̂0τmin
. (3)

The limits above come from integrating over the triangle presented in Fig. 1. Boundary (a) arises
from the need to cut off non-diffusive momentum exchanges above the scale µ. The line (b) is
then defined by k2

⊥ ≡ q̂0τ, marking the boundary with the deep LPM regime in which multiple
scatterings occur. Above boundary (b) there is no longer a double-logarithmic enhancement as the
k+ integrand changes as 1/k+ → 1/

√
k+. Finally, boundary (c) is an artefact of the instantaneous

approximation: scatterings between the jet and medium are assumed to take place instantaneously
compared to the formation time associated with the radiation. The result from [16] is recovered
upon identifying µ with the saturation scale, Qs ≡ q̂Lmed.

In a weakly coupled QGP, as soon as the energy overlaps with the temperature scale, one
needs to account for more medium effects than those captured by these instantaneous, spacelike
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Figure 2: Deformation of the double-logarithmic phase space with the inclusion of thermal effects. Regions
1 and 2 form the “few scattering” regime, over which we integrate to get Eq. (4) whereas we integrate over
regions 3 and 4, the “strict single scattering” regime to get Eq. (5). Region 5 then gives rise to the O(g)
corrections to q̂, calculated in [7]. Figure taken from [3].

interactions. Specifically, by taking T > µ �
√
gT 1 and replacing 1 → (1 + 2nB(k+)) in the k+

integrand of Eq. (3), we find

δq̂(µ)few =
αsCR

2π
q̂0

{
ln2 µ2

q̂0τint
−

1
2

ln2 ωT

q̂0τ
2
int

}
with ωT =

2πT
eγE

for
ωT

µ2 � τint �

√
ωT
q̂0
. (4)

In doing so, we account for the Bose-Einstein stimulated emission of the radiated gluon as well
as the absorption of a gluon from the medium. We will comment shortly on the purpose of τint.
But can these additional effects be neglected in a way that is consistent with single scattering, for
instance, by demanding that q̂0τ

2
min � T in Eq. (3)2? It turns out that the answer is no [3]: such a

choice of τmin would necessarily allow for formation times associated with the deep LPM regime,
where τLPM & 1/g2T . Note that the correction in Eq. (4) corresponds to integrating over the 1 and
2 regions in Fig. 2.

The requirement 1/g2T � τint � 1/gT means that processes where a few scatterings occur
are included in Eq. (4). Indeed, τint defines a border with what we have identified as a strict
single scattering regime, where the formation time is a priori consistent with single scattering, i.e
τ � 1/g2T . This region is characterised by so-called semi-collinear processes [22], where timelike
as well as spacelike exchanges are allowed to occur. The leading contribution from this region is
given by integrating over the 3 and 4 regions in Fig. 2 and yields

δq̂semi(µ) =
αsCR

2π
q̂0 ln2 µ

2τint
ωT

, (5)

where we have taken the HOA. Adding Eqs. (4), (5), we then find

δq̂(µ⊥)dlog =
αsCR

4π
q̂0 ln2 µ4

q̂0ωT
. (6)

1The µ > T case is studied in [3].
2This demand is motivated by the fact that nB(k+) is exponentially suppressed for k+ � T .
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As well as the disappearance of τint, we note the absence of an IR cutoff, τmin; looking to Fig. 2,
the double-logarithm is instead cut off by the scale ωT. Thus, the thermal scale plays an extremely
important role in this context.

3. Relation to Classical Corrections

As well as double-logarithmic corrections at O(g2), we also find power law corrections when
integrating over regions 3 and 4

δqPL =
αsCR

2π
q̂0

4T ln
(
µ2τint
k+IRe

)
k+IR

, (7)

where k+IR is an IR cutoff on the energy. Power law corrections of this kind are usually discarded as
they are unphysical – they always cancel against other power law corrections coming from adjacent
regions of phase space. Here, we use this fact to our advantage; in the calculation of the O(g)
corrections, power law corrections should appear, with k+IR instead acting as a UV cutoff there.

In more detail, one can use causality properties of C(k⊥), also revealed in [7], to carry out
the k+ integral by analytically continuing into the k+ complex plane. k+IR then appears as the
radius of the arc of the deformed contour, with the arc lying between the zeroth and first Matsubara
modes. There is no dependence on k+IR in [7] as the 1/k+IR terms go to zero and can thus be safely
neglected. Nevertheless, we have indeed computed these arc contributions explicitly and shown that
they cancel exactly against the result from Eq. (7), further confirming how the region from which
the classical corrections emerge is connected to that associated with the logarithmically-enhanced
quantum corrections.

4. Conclusion and Outlook

We have studied how, in the setting of a weakly coupled QGP, the thermal scale affects the
double-logarithmic phase space, originally identified in [16, 17]. In more detail, we showed how
the scale, ωT cuts off this region of phase space and furthermore, how the region, which gives rise
to the classical corrections, computed in [7] fits in comparison.

In obtaining Eq. (6), we have taken the HOA, neglecting a neighbouring region phase space,
which permits both single and multiple scattering processes. To properly deal with such a region,
we would need to solve an LPM resummation equation, derived in [3] (see also [23]), differential in
the transverse momentum picked up by the parton. We foresee that the use of the improved opacity
expansion [24] could allow us to arrive at an approximate solution of this equation but we leave
such an endeavour to future work.

Acknowledgements

We thank Jacopo Ghiglieri for collaboration on the original work [3].

5



P
o
S
(
H
a
r
d
P
r
o
b
e
s
2
0
2
3
)
1
4
1

Classical vs. quantum corrections to jet broadening in a weakly coupled QGP Eamonn Weitz

References

[1] L. Apolinário, Y.-J. Lee and M. Winn, Prog. Part. Nucl. Phys. 127 (2022) 103990
[2203.16352].

[2] Q.-F. Han, M. Xie and H.-Z. Zhang, Eur. Phys. J. Plus 137 (2022) 1056 [2201.02796].

[3] J. Ghiglieri and E. Weitz, JHEP 11 (2022) 068 [2207.08842].

[4] P.B. Arnold and W. Xiao, Phys.Rev. D78 (2008) 125008 [0810.1026].

[5] P. Aurenche, F. Gelis and H. Zaraket, JHEP 0205 (2002) 043 [hep-ph/0204146].

[6] E. Braaten and R.D. Pisarski, "Phys. Rev. D" 45 (1992) 1827.

[7] S. Caron-Huot, Phys.Rev. D79 (2009) 065039 [0811.1603].

[8] E. Braaten and A. Nieto, Phys.Rev. D51 (1995) 6990 [hep-ph/9501375].

[9] M. Panero, K. Rummukainen and A. Schäfer, Phys.Rev.Lett. 112 (2014) 162001
[1307.5850].

[10] G.D. Moore and N. Schlusser, Phys. Rev. D 101 (2020) 014505 [1911.13127].

[11] G.D. Moore, S. Schlichting, N. Schlusser and I. Soudi, JHEP 10 (2021) 059 [2105.01679].

[12] S. Schlichting and I. Soudi, Phys. Rev. D 105 (2022) 076002 [2111.13731].

[13] G.D. Moore and N. Schlusser, Phys. Rev. D 102 (2020) 094512 [2009.06614].

[14] J. Ghiglieri, G.D. Moore, P. Schicho and N. Schlusser, JHEP 02 (2022) 058 [2112.01407].

[15] J. Ghiglieri, G.D. Moore, P. Schicho, N. Schlusser and E. Weitz, 7, 2023 [2307.09297].

[16] T. Liou, A. Mueller and B. Wu, Nucl.Phys. A916 (2013) 102 [1304.7677].

[17] J.-P. Blaizot, F. Dominguez, E. Iancu and Y. Mehtar-Tani, JHEP 1406 (2014) 075
[1311.5823].

[18] J.-P. Blaizot and Y. Mehtar-Tani, Nucl. Phys. A 929 (2014) 202 [1403.2323].

[19] P. Caucal and Y. Mehtar-Tani, Phys. Rev. D 106 (2022) L051501 [2109.12041].

[20] P. Caucal and Y. Mehtar-Tani, JHEP 09 (2022) 023 [2203.09407].

[21] P. Arnold and S. Iqbal, JHEP 1504 (2015) 070 [1501.04964].

[22] J. Ghiglieri, G.D. Moore and D. Teaney, JHEP 03 (2016) 095 [1509.07773].

[23] E. Iancu, JHEP 10 (2014) 095 [1403.1996].

[24] J.a. Barata, Y. Mehtar-Tani, A. Soto-Ontoso and K. Tywoniuk, JHEP 09 (2021) 153
[2106.07402].

6

https://doi.org/10.1016/j.ppnp.2022.103990
https://arxiv.org/abs/2203.16352
https://doi.org/10.1140/epjp/s13360-022-03247-9
https://arxiv.org/abs/2201.02796
https://doi.org/10.1007/JHEP11(2022)068
https://arxiv.org/abs/2207.08842
https://doi.org/10.1103/PhysRevD.78.125008
https://arxiv.org/abs/0810.1026
https://arxiv.org/abs/hep-ph/0204146
https://doi.org/10.1103/PhysRevD.45.R1827
https://doi.org/10.1103/PhysRevD.79.065039
https://arxiv.org/abs/0811.1603
https://doi.org/10.1103/PhysRevD.51.6990
https://arxiv.org/abs/hep-ph/9501375
https://doi.org/10.1103/PhysRevLett.112.162001
https://arxiv.org/abs/1307.5850
https://doi.org/10.1103/PhysRevD.101.014505
https://arxiv.org/abs/1911.13127
https://doi.org/10.1007/JHEP10(2021)059
https://arxiv.org/abs/2105.01679
https://doi.org/10.1103/PhysRevD.105.076002
https://arxiv.org/abs/2111.13731
https://doi.org/10.1103/PhysRevD.102.094512
https://arxiv.org/abs/2009.06614
https://doi.org/10.1007/JHEP02(2022)058
https://arxiv.org/abs/2112.01407
https://arxiv.org/abs/2307.09297
https://doi.org/10.1016/j.nuclphysa.2013.08.005
https://arxiv.org/abs/1304.7677
https://doi.org/10.1007/JHEP06(2014)075
https://arxiv.org/abs/1311.5823
https://doi.org/10.1016/j.nuclphysa.2014.05.018
https://arxiv.org/abs/1403.2323
https://doi.org/10.1103/PhysRevD.106.L051501
https://arxiv.org/abs/2109.12041
https://doi.org/10.1007/JHEP09(2022)023
https://arxiv.org/abs/2203.09407
https://doi.org/10.1007/JHEP04(2015)070
https://arxiv.org/abs/1501.04964
https://doi.org/10.1007/JHEP03(2016)095
https://arxiv.org/abs/1509.07773
https://doi.org/10.1007/JHEP10(2014)095
https://arxiv.org/abs/1403.1996
https://doi.org/10.1007/JHEP09(2021)153
https://arxiv.org/abs/2106.07402

	Introduction
	Double Logarithmic Corrections and the Thermal Scale
	Relation to Classical Corrections
	Conclusion and Outlook

