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We design a new observable, the 𝜂 expansion rate fluctuation, to characterize deviations from
linearity in the redshift-distance relationship in the local Universe. We also show how to compress
the resulting signal into spherical harmonic coefficients in order to better decipher the structure
and symmetries of the anisotropies in the local expansion rate. We apply this analysis scheme to
several public catalogs of redshift-independent distances, the Cosmicflows-3 and Pantheon data
sets, covering the redshift range 0.01 < 𝑧 < 0.05.
The leading anisotropic signal is stored in the dipole. Within the standard cosmological model, it
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the CMB. This term alone, however, provides an overly simplistic and inaccurate description
of the angular anisotropies of the expansion rate. We find that the quadrupole contribution is
non-negligible (∼ 50% of the anisotropic signal), in fact, statistically significant, and signaling a
substantial shearing of gravity in the volume covered by the data. In addition, the 3D structure of
the quadrupole is axisymmetric, with the expansion axis aligned along the axis of the dipole.
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1. Introduction

The lack of convergence to a consensus value for the Hubble constant has triggered a search for
the reliability of non-standard cosmological line elements. The question is whether metrics with a
lower degree of symmetry than FRW, while remaining simple, provide a reliable description of the
data in regions below the uniformity scale [1].

We have addressed this problem in [2] by determining the multipole structure of the fluctuations
in the expansion rate of the local patch of the universe. By exploiting a new observable, the expansion
rate fluctuation 𝜂, we have shown that unexpected symmetries in the multipole components of the
expansion rate field appear whether the analysis is performed on independent data such as galaxy
or SNIa.

In the following, we highlight the main methodology developed to estimate the expansion rate
fluctuation field from available catalogs of redshift-independent distances. We also review the main
results obtained in [2]. We display formulas in natural units (𝑐 = 1) and we refer to the standard
ΛCDM model, as the flat FRW spacetime which best fits the Planck18 data [3].

2. The Local Expansion Rate Fluctuations

An observable that captures deviations from the linear redshift-distance relation is the expansion
rate fluctuation [2]

𝜂 ≡ log
𝑧

𝐻0𝑑𝐿
. (1)

where 𝑧 is the redshift, 𝑑𝐿 is the luminosity distance, and 𝐻0 is a normalizing factor whose
amplitude is fixed by requiring that the average value of the fluctuations over the volume covered by
data vanishes. As detailed in [2], a statistically unbiased estimator of the expansion rate fluctuations
is

𝜂 = log
[
𝑧

𝐻0

]
+ 5 − 𝜇

5
(2)

where 𝜇 is the distance modulus of a cosmic source. Since the latter quantity is normally distributed,
it follows that 𝜂 is also a Gaussian random variable (if we ignore the error in redshift) with an
uncertainty 𝛿 reflecting the imprecision with which the redshift-independent distances are estimated
(𝛿 = 𝜎𝜇/5).

At each point in space-time, there are, among others, two characteristic observers of the large-
scale structure of the universe: the matter-comoving observer, sharing the motion of the surrounding
dust flow and b) the CMB-comoving observer, at rest in a reference frame in which the CMB dipole
disappears. These observers are indistinguishable in a uniform universe described by the FRW
metric. On the other hand, they provide different estimates of the redshift and distance of the same
source in a space-time with arbitrary geometry

If one adopts the point of view of the matter-comoving observer, then, on very small scales,
i.e. for redshifts smaller than a caracteristic scale 𝑧𝑙 << 1 the expansion rate fluctuation 𝜂 becomes
independent on redshift and simply converges to log(H0/𝐻0), where H0 is the effective Hubble
parameter in a generic 4D spacetime, as defined by [4–6].
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If, instead, one considers an observer who, in first approximation, sees an isotropic CMB, then
𝜂, which diverges when 𝑧 goes to zero, has a straightforward physical interpretation within a FLRW
cosmological model: it is related to the radial component of the resulting peculiar velocity as

𝜂 ≈ 𝑣(1 + 𝑧)
𝑧 ln 10

. (3)

The versatile nature of the 𝜂 observable is thus evident. When evaluated by a matter-comoving
observer, it provides insights into fluctuations of the spacetime metric in a fully unperturbative way,
thus allowing investigations beyond the standard cosmological scenario in a model-independent
way. This approach is pursued in [7]. If evaluated in the CMB rest frame, instead, as done by [2]
and in this paper, 𝜂 sheds light on a standard cosmological observable and is thus instrumental in
placing constraints on the perturbative sector of the FRW model.

3. The multipolar structure of the expansion rate fluctuation

We can compress the information contained in the 𝜂 observable into a few coefficients. To
this end, we expand the expansion rate field 𝜂 in Spherical Harmonic (SH) components. We
orthogonally decompose 𝜂 on a sphere as follows

𝜂 =

∞∑︁
ℓ=0

ℓ∑︁
𝑚=−ℓ

𝑎ℓ𝑚𝑌ℓ𝑚(𝜃, 𝜙) =
∞∑︁
ℓ=0

𝜂ℓ , (4)

where 𝑌ℓ𝑚(𝜃, 𝜙) is the spherical harmonic function. Thus, the Fourier coefficients 𝑎ℓ𝑚 can be
expressed as

𝑎ℓ𝑚 ≡
∫ 2𝜋

0

∫ 𝜋

0
𝜂(𝜃, 𝜙)𝑌 ∗

ℓ𝑚(𝜃, 𝜙) sin 𝜃 𝑑𝜃𝑑𝜙. (5)

Note that, due to the definition, the monopole (ℓ = 0) of 𝜂 vanishes. In addition, one can define the
angular power spectrum of the 𝜂 anisotropy as

𝐶ℓ = ⟨|𝑎ℓ𝑚 |2⟩𝑒, (6)

where the expectation is intended to be over a statistical ensemble of universes.

𝐶̂ℓ =
1

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

|𝑎ℓ𝑚 |2, (7)

is an unbiased estimator for 𝐶ℓ .

3.1 Estimation of the angular 𝜼 field

The expansion rate fluctuation estimator 𝜂(r) is a discrete random variable. The analysis of
this observable can be simplified, and the underlying continuous theoretical model (1) can be better
traced if we convert it into a stochastic field. We thus average 𝜂(r) over all the objects at position
r within a given volume 𝑉 (Ω, 𝑅), where Ω is a solid angle centered on the observer and 𝑅 the
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depth of the catalog (i.e. its upper edge). The angular anisotropies seen by the observer are thus
piece-wise defined as

𝜂(Ω) =
∑𝑁

𝑖 𝜂(r𝑖)𝑤(r𝑖)𝑊 (r𝑖 |𝑉 (Ω, 𝑅))∑𝑁
𝑖 𝑤(r𝑖)𝑊 (r𝑖 |𝑉 (Ω, 𝑅))

(8)

where 𝑁 is the number of objects in the catalog, 𝑤(r𝑖) = 1/𝛿2
𝑖

is a weight that takes into account
the precision in the measurement of the distance of the 𝑖-𝑡ℎ object in the catalog. 𝑊 (r|𝑉 (Ω, 𝑅)) is
a window function which evaluates to unity if r𝑖 ∈ 𝑉 and is null otherwise.

It is clear that averaging has the advantage of reducing noise at the cost of a lower angular
resolution. The latter is essentially controlled by the aperture of the solid angle Ω, although it also
depends, in principle, on the depth 𝑅 of the sample on which the spatial averaging is performed.

In practice, we construct the 𝜂 2D field out of a discrete point process 𝜂(r), by first partitioning
the sky in 𝑁𝑝𝑖𝑥 identical pixels (each subtending a solid angle Ω𝑖) using HEALPix [8] and then
by applying eq. (8) to objects within the volume 𝑉 subtended by each pixel Ω𝑖 . HEALPix is
an algorithm which tessellates a spherical surface into curvilinear quadrilaterals, each covering
the same area as every other. Although characterized by a different shape. The resolution of the
HEALPix grid is calculated as 𝑁𝑝𝑖𝑥 = 12𝑁2

𝑠𝑖𝑑𝑒
where 𝑁𝑠𝑖𝑑𝑒 = 2𝑡 , and 𝑡 ∈ N. The baseline grid,

corresponding to 𝑡 = 0, has 12 pixels. Once the value of 𝜂 is estimated in each pixel, the Fourier
coefficients of the spherical harmonic decomposition are computed using HEALPix.

3.2 Estimation of Measurement Errors

We determine the errors, both statistical and systematic, that affect the SH reconstruction by
means of Monte Carlo simulations. We consider as input model the Fourier coefficients (up to
ℓ𝑚𝑎𝑥 = 3𝑁𝑠𝑖𝑑𝑒 −1) measured from the data, and we use them to simulate a fiducial 𝜂 field. We then
randomly perturb the expansion field, at the angular position of the objects, by means of a Gaussian
noise model with mean value 𝜂 and with standard deviation 𝛿. We construct in this way a suite of
1000 mock catalogs which are tessellated with HEALPix and Fourier transformed in exactly the
same way as the data.

The systematic errors that affect our analysis, defined as the difference between the input pa-
rameter and the average value inferred by means of the Monte Carlo simulations, are always smaller
than the statistical error. However, they are non-negligible and we thus correct the observational
measurements for these bias factors.

4. Data

4.1 The Pantheon sample

The Pantheon SNIa compilation [9] is comprised of 1048 objects lying in the interval 0.01 <

𝑧 < 2.26. The catalog was assembled using data from the Supernova Legacy Survey (SNLS)
[10], the Sloan Digital Sky Survey (SDSS) [11, 12], Pan-STARS1 (PS1) [9], [13–17] the Carnegie
Supernova Project (CSP) [18] and various surveys made possible by the Hubble Space Telescope
(HST), namely CANDLES/ CLASH [19–21], GOODS [22] and SCP [23].

In Fig 1 (the first column) the angular distribution of the Pantheon data is shown together with
the differential number counts profile 𝑑𝑁 (𝑧) as a function of redshift. There are no objects in the
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Figure 1: Upper left : Mollweide projection, in galactic coordinates, of the distribution of the Pantheon SNIa
with redshift 0.01 < 𝑧 < 0.05. Lower left : histograms of the number of counts as a function of redshift.
The second and the third columns are the same as the first, but for the CF3g and CF3sn samples respectively.

very local patch of the universe, below 𝑧 = 0.01, and the sample becomes quickly anisotropic as
soon as the redshift is larger than 𝑧 = 0.05. It also becomes in-homogthaneneous, i.e. the scaling of
𝑑𝑁 is not anymore proportional to 𝑧2, for 𝑧 ≳ 0.04. As a consequence, to minimize possible biases
and systematic effects, a trade-off threshold value 𝑧 = 0.05 is chosen for selecting the SNIa sample
to be used in this study. This leaves us with a subsample containing 158 SNIa.

4.2 The Cosmicflows-3 data

For the purposes of our analysis, we complement the Pantheon supernovae sample with the
Cosmicflows-3 catalog [24]. This is an all-sky galaxy catalog comprised of 17669 nearby galaxies
𝑧 ≤ 0.116 for which redshift-independent distances are inferred using the the correlation between
galaxy rotation and luminosity (Tully-Fisher law), or the Fundamental Plane methods.

The angular and radial distribution of the Cosmicflows-3 galaxies is shown in Fig. 1 (the
second and the third columns). They are fairly evenly distributed in both redshift and position in
the sky except for redshifts greater than 0.05. So, we don’t include the galaxies beyond this redshift
since the sample becomes too sparse and covers the sky anisotropically. We also exclude from the
sample, galaxies with redshift less than 0.01, in order to facilitate the comparison with the results
obtained from the Pantheon data. We, therefore, focus our analysis on the Cosmicflows-3 subsample
which is constrained in the range 0.01 < 𝑧 < 0.05 and includes 13661 galaxies.

Within this redshift range, the CF3 catalog contains 286 galaxies hosting a SNIa (Fig. 1 third
column) for which the distance modulus is known using the standard candle method. Although
systematically homogenized, this compilation of SNIa-based distances remains fundamentally het-
erogeneous, with distance moduli derived from different light curve fitters. Although this dataset
contains the Pantheon as a subsample, we use it as a control sample to check the robustness of the
results we obtain using the Pantheon dataset alone. In what follows, we will refer to the CF3 sub-
sample with SNIa-based distances as CF3sn and indicate the complementary set with the acronym
CF3g.
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Sample 𝑁𝑝𝑖𝑥 𝑙𝑑 𝑏𝑑
𝐶̂1

(10−4)
Δ𝜂1

(10−2)
p-value

(%)
𝑙𝑞 𝑏𝑞

𝐶̂2

(10−4)
Δ𝜂2

(10−2)
p-value

(%)
𝑙𝑡 𝑏𝑡

𝐶̂3

(10−4)
Δ𝜂3

(10−2)
p-value

(%)
CF3

[0.01, 0.05]
192 291 ± 15 12 ± 7 3.0 ± 1.6 1.6 0.03 323 ± 16 9 ± 4 2.4 ± 0.9 1.9 0.12 289 ± 24 16 ± 15 0.1 ± 0.4 1.2 30.44

CF3
[0.01, 0.05]

48 283 ± 6 12 ± 5 5.3 ± 0.8 1.9 < 0.01 310 ± 11 4 ± 8 0.9 ± 0.3 1.1 < 0.01 284 ± 7 12 ± 5 0.5 ± 0.2 1.3 0.01

CF3g
[0.01, 0.05]

48 286 ± 7 4 ± 6 7.0 ± 1.0 2.0 < 0.01 338 ± 8 22 ± 5 1.1 ± 0.4 1.3 < 0.01 255 ± 9 11 ± 5 0.7 ± 0.2 1.5 0.01

CF3
[0.01, 0.05]

12 285 ± 5 11 ± 4 5.1 ± 0.8 1.9 < 0.01 308 ± 7 1 ± 7 1 ± 0.3 1.1 < 0.01 - - - - -

CF3g
[0.01, 0.05]

12 296 ± 6 18 ± 5 4.0 ± 0.6 1.7 < 0.01 323 ± 34 2 ± 17 1.3 ± 0.4 1.4 < 0.01 - - - - -

CF3sn
[0.01, 0.05]

12 322 ± 23 −8 ± 18 3.7 ± 1.5 1.5 0.27 343 ± 15 −8 ± 10 1.7 ± 1.4 1.7 2.90 - - - - -

Pantheon
[0.01, 0.05]

12 334 ± 42 6 ± 20 3.5 ± 2.7 1.6 4.37 337 −5 0.6 ± 1.9 1.6 33.33 - - - - -

CF3
[0.01, 0.03]

12 279 ± 5 12 ± 5 7.8 ± 1.0 2.3 < 0.01 310 ± 8 11 ± 6 2.9 ± 0.6 1.9 < 0.01 - - - - -

CF3
[0.03, 0.05]

12 301 ± 15 10 ± 14 1.1 ± 0.7 1.0 0.03 277 ± 28 −12 ± 11 0.9 ± 0.3 1.0 2.04 - - - - -

Table 1: Parameters of the spherical harmonic decomposition. Central values are not the bare value
returned by the spherical harmonic estimator but are obtained after subtracting systematic effect determined
by means of 1000 Monte Carlo simulations. We quote also the direction for the dipole, and direction of the
peaks of the ℓ = 2 and 3 multipoles which are close to the direction of the dipole, and also the amplitude
Δ𝜂𝑙 =

𝜂2𝑚𝑎𝑥 −|𝜂2𝑚𝑖𝑛
|

2 . The p-value is computed by using 10000 Monte Carlo simulations. For Pantheon, the
error in the direction of the quadrupole is not quoted because it is larger the 180 degrees.

5. Results

In this section, we present and comment on the results obtained by applying the formalism to
various datasets. The relevant parameters of the SH analysis of the expansion rate field are quoted in
TABLE 1. FIG. 2 shows the 𝜂 field for the CF3 sample tessellated according to different resolutions
(192, 48 and 12 pixels). Smoothing mostly impact the errors with which the relevant SH parameters
are estimated, with generally smaller error as the number of pixels decreases. The central values of
the SH parameter, instead, are statistically stable: they fluctuate from one reconstruction to the next,
but the discrepancies are within what is expected from a random sampling of a common underlying
Gaussian distribution. The results are thus globally independent of the pixelization strategy adopted.
For SNIa, because the number of objects is smaller, we can only use the lowest resolution (12 pixels)
to do the multipole expansion. The price to pay is that now the higher multipoles (ℓ ≥ 3) cannot be
estimated.

We then ask whether each multipole found in each data sample is statistically significant. So,
we perform Monte Carlo simulations to find the 𝑝-value, which is the probability to find amplitude
of each multipole equal to or higher than the measured value, if we consider a model of the expansion
rate fluctuation 𝜂 that contains only the monopole and no higher order terms and generate 10000
Monte Carlo mock catalogs simulating each data set. This is done by replacing the model distances
with a fictitious one randomly drawn from a Gaussian distribution 𝐺 (𝜂, 𝛿).

The strongest contribution to the signal is provided by the dipole term, whose maximal intensity
is about 1% of the signal locked in the normalizing term log𝐻0, i.e. ∼ 4.5% of 𝐻0. The power
locked in the dipole (as determined using the the CF3g sample) is 𝐶̂1 = (4.0 ± 0.6) · 10−4, an
estimation characterised by a high signal-to-noise ratio (snr ∼ 6.6). Consistently, this value is in
excellent agreement (well within 1𝜎) with that estimated from both the CF3sn and the Pantheon
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Figure 2: Upper panel: the angular 𝜂 field traced by the CF3. From left to right are shown different
resolution maps corresponding to the tessellation of the sky with 192, 48 and 12 HEALPix cells. The dipole
𝜂1 (second panel from the top), quadrupole 𝜂2 (third panel from the top), and octupole 𝜂3 (bottom panel)
components are also shown.

sample ( (3.7 ± 1.5) · 10−4 and (3.5 ± 2.7) · 10−4 respectively).
We find that the contribution of the quadrupole component to the anisotropies observed in the 𝜂

expansion field is significant both in terms of its amplitude, which is comparable to that of the dipole
( max(𝜂2) ∼ max(𝜂1)), and in terms of its statistical significance (measured by the signal-to-noise
ratio (𝑠𝑛𝑟 ∼ 3.25 for CF3g and 𝑠𝑛𝑟 ∼ 1.2 for CF3sn)

More intriguingly we find that the maximum of the quadrupole signal is aligned with the dipole
direction (see FIG. 2). This peculiar alignment is consistently and independently confirmed by both
galaxy (CF3g) and SNIa (CF3sn) samples (see TABLE 1 and FIG. 3). We highlight the fact that
inferences made with the different samples are consistent, but there is one difference that deserves
attention and further investigation: there is no evidence of a quadrupole component in the Pantheon
data as judged from the amplitude of the 𝐶̂2 power, both in term of its 𝑠𝑛𝑟 and of its 𝑝-value.

Interestingly, we find evidence (𝑠𝑛𝑟 ∼ 2.5) that the contribution of the octupole is also not
negligible, at least when the whole CF3 sample is analyzed with a 48 HEALPix pixel smoothing.
The power stocked in this component is roughly half that in the quadrupole although the intensity
peaks at a value comparable to the maximum intensity of the quadrupole. Even more unexpected

7
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;

Figure 3: Left panel: the 𝜂 field tessellated into 48 pixels and traced by the CF3g sample. The dipole
𝜂1 (second panel from the top), quadrupole 𝜂2 (third panel from the top), and octupole 𝜂3 (bottom panel)
components are also shown. Right panel: same as above, but now the expansion rate fluctuation field is
tessellated into 12 pixels and traced by the CF3sn sample.

is the fact that the direction of the maximum of the octupole component (𝑙𝑡 = 284 ± 7, 𝑏𝑡 = 12 ± 5)
appears to be aligned with that of the dipole (𝑙𝑑 = 283 ± 6, 𝑏𝑑 = 12 ± 5) and of the quadrupole
(𝑙𝑞 = 310 ± 11, 𝑏𝑞 = 4 ± 8) (see TABLE 1).

It is however critical to assess whether their curious structure is the result of a fortuitous
averaging coincidence. To investigate this issue we repeat the analysis separately in two redshift
intervals 0.01 ≤ 𝑧 ≤ 0.03 and 0.03 ≤ 𝑧 ≤ 0.5. These are the smallest subvolumes that still provide
detections with acceptable snr and low risk of misinterpretation (low p-value), if only for the CF3
sample. Results are shown in Fig. 4.

The direction of the dipole and the quadrupole reconstructed in the two volumes consistently
point in the same direction (to within about 1𝜎) and is also in excellent agreement with the results
found for the whole samples. This confirms that the alignment phenomenon is not a random overlap
but rather physical in nature. There is, instead a significant change in the power spectrum amplitude

8
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Figure 4: Left panels: The 𝜂 field (upper), its dipolar (center) and quadrupolar (lower) components traced
by the CF3 sample in the redshift interval 0.01 ≤ 𝑧 ≤ 0.03. Right panels The same as before but for galaxies
in the deeper redshift range 0.03 ≤ 𝑧 ≤ 0.05.

of the multipoles. The 𝐶̂1 component decreases by more than about 5.5𝜎 as the redshift of the
sample doubles. The same decrement with depth (∼ 3𝜎) is observed for the amplitude of the 𝐶̂2

coefficient.

5.1 Axial symmetry of the multipoles

In FIG. 5 we show the 3D structure of the quadrupole component of the expansion rate fluctua-
tions 𝜂 reconstructed using either the galaxy or the supernovae sample. This figure offers a different
perspective on the dipole-quadrupole alignment. It shows that both quadrupoles independently
reconstructed using galaxy and supernova data present an axially symmetric configuration which
strongly polarizes in the direction defined by the dipole.

This additional symmetry, although physically unexpected since it seems to imply extreme
fine-tuning in the local distribution of matter fluctuations, makes it possible to simplify, at least
mathematically, the analysis of the anisotropies of the eta field. The fact that the direction (𝑙𝑑 , 𝑏𝑑)
along which the multipoles aligne (Apex direction) defines not only a preferred axis, but indeed an
axis of symmetry implies that the expansion rate fluctuation field 𝜂 effectively depends only on a
single variable, the polar angle 𝛼 between the line-of-sight of an object and the direction (𝑙𝑑 , 𝑏𝑑).
A simple expansion of the field in Legendre polynomials 𝑃ℓ (cos𝛼), as opposed to the full spherical
harmonics machinery, is thus enough for seizing the essential functional behavior of the 𝜂 field.

9
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Figure 5: The 3D structure of the multipole component 𝜂2 of the CF3g sample (left panel) and for the
CF3sn sample (right panel). The radial coordinate represents the absolute value for 𝜂; the red and blue colors
indicate positive and negative signs respectively. For reference, the gray surface represents the orientation of
the galactic plane while the black arrow gives the direction of the dipole as reconstructed for each sample.

Sample
𝑎1

(10−2)
𝑎2

(10−2)
𝑎3

(10−2)
𝜒2

1/𝑑𝑜 𝑓 𝜒2
2/𝑑𝑜 𝑓 𝜒2

3/𝑑𝑜 𝑓
𝑣𝑏

(km/s)
CF3

0.01 < 𝑧 < 0.05
1.7 ± 0.1 0.9 ± 0.2 0.6 ± 0.2 8.50 4.83 2.71 292 ± 21

CF3g
0.01 < 𝑧 < 0.05

1.8 ± 0.1 0.9 ± 0.2 0.5 ± 0.2 7.59 4.34 2.83 307 ± 23

CF3sn
0.01 < 𝑧 < 0.05

1.3 ± 0.4 0.5 ± 0.5 0.4 ± 0.5 1.53 1.40 1.18 195 ± 57

Pantheon
0.01 < 𝑧 < 0.05

1.6 ± 0.7 0.1 ± 0.7 −0.8 ± 0.5 0.46 0.46 0.54 243 ± 110

Table 2: The coefficient of Legendre expansion for 10 bins in cos𝛼 where 𝛼 is the angle between the and
principal axis (𝑙, 𝑏) = (285, 11). The error is calculated by the error of average 𝜂 for each bin. 𝑎ℓ is calculated
by eq. (10).

The average value 𝜂(𝛼) reconstructed in open circular sectors of identical width having the
center on the axis of symmetry and angular separation 𝛼 from the apex direction is shown in FIG 6
for the galaxy and SNIa samples. The Fourier coefficients of the expansion

𝜂(𝛼) =
3∑︁

ℓ=1
𝑎ℓ𝑃ℓ (cos𝛼), (9)

are computed as

𝑎ℓ =
2ℓ + 1
𝑁𝑏𝑖𝑛𝑠

𝑁𝑏𝑖𝑛𝑠∑︁
𝑖=1

𝜂(cos𝛼𝑖)𝑃ℓ (cos𝛼𝑖), (10)

and the results are quoted in TABLE 2.
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χ2/dof = 8.51 (a1P1)

χ2/dof = 4.94 (a1P1 + a2P2)

χ2/dof = 2.16 (a1P1 + a2P2 + a3P3)
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Figure 6: Upper left: average value of 𝜂, for the CF3 sample, in open spherical sectors of identical width
Δ cos𝛼 = 0.2 and angular separation 𝛼 from the direction 𝑙 = 285, 𝑏 = 11. The dotted line corresponds to
the dipolar model ( 𝑎1 = 1.9 · 10−2), the dashed line includes also the contribution of a quadrupole term (
𝑎2 = 1.1 · 10−2). The effects of adding the octupole term ( 𝑎3 = 1.1 · 10−2) are shown by the solid line. These
models are compared to CF3g data (upper right), the CF3sn data (lower right) and the Pantheon data (lower
right). In this latter case, Note the absence of data in the rightmost bin, i.e., along the direction in which the
low-order multipoles of the CF3 sample align.

5.2 Bulk motion model

The perturbation theory of the standard cosmological model provides a framework for inter-
preting our results. If peculiar velocity are random and uncorrelated in a given angular direction,
the average expansion field 𝜂 vanishes in that direction. Consider instead a peculiar velocity field
𝑣𝑏 which is constant in both direction and amplitude over a typical scale 𝑅. If we choose 𝛼 as
measuring the angle between its direction and the line of sight, the expansion field is predicted to
vary as (cf. eq. 3)

𝜂(𝛼) = 𝑣𝑏

ln 10
⟨(1 + 𝑧)/𝑧⟩ cos𝛼. (11)

Suppose that ⟨(1 + 𝑧)/𝑧⟩, the average over the volume subtended by circular bands of angular
separation 𝛼 from the direction of the bulk motion, does not depend on 𝛼, which is a fairly
good approximation for large samples. Then, by comparing (11) with (9), we deduce that the
bi-dimensional expansion field 𝜂 is compatible with being the sky projected realisation of a three-
dimensional bulk flow model. The amplitude of the bulk velocity follows from the amplitude of the
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Figure 7: Likelihood contours (1𝜎 and 2𝜎) for the direction of the dipole reconstructed using 12 pixels for
the CF3g (red lines), CF3sn (purple lines) and Pantheon (blue lines) samples. For reference, the direction of
the motion of the barycenter of the Local Group with respect to the CMB (𝑙, 𝑏) ≈ (270, 27) [25] is marked
(black triangle) together with the direction of its bulk component (𝑙, 𝑏) ≈ (299, 15) (Black square).

dipolar parameter 𝑎1 (the coefficient of the expansion on the Legendre basis 𝑃1)

𝑣𝑏 =
𝑎1 ln 10

⟨(1 + 𝑧)/𝑧⟩ . (12)

Assuming 500 km/s as a typical value for the peculiar velocity of galaxies, we expect the latter
relation to apply fairly well for objects with 𝑧 ≥ 0.01, those considered in our analysis. Note that
in this picture, the amplitude of the bulk is controlled by the amplitude of the dipolar parameter 𝑎1

and also by the depth of the survey volume.
The direction of the bulk motion for the three samples is shown in Figure 7. This direction

results from separating in the SH analysis the direction of the dipole from that of other higher
order multipoles. However, due to the alignment of the lower multipoles, the direction of the bulk
coincides fairly well with the direction of maximum anisotropy in the 𝜂 maps.

5.3 Effects of anisotropies on the Hubble diagram

As a consequence of the alignment of the maximal intensities of its dipole, quadrupole and
octupole components, the expansion field displays an ‘apex’ towards which the rate of expansion
is significantly higher than average and an anti-apex where the expansions is coherently lower than
the monopole component. This preferred axis characteristically shows up in the Hubble diagram.

FIG. 8 shows the difference between the best estimates of 𝐻0 deduced from the Hubble diagram
analysis of the Pantheon SNIa dataset in two antipodal directions. In practice this is achieved by
fitting the relation 𝜇 = 5 log(𝑧/𝐻0) + 25 separately to the distance modulus of the Pantheon objects
falling in two cones of total width 120◦ (about 25% of the sky) centered on the observer and whose
axes point in antipodal directions (apex and antiapex).

The left panel in FIG. 8 is obtained without implementing any redshift correction. As a result
we find that Hubble constant estimates may show variation as high as Δ𝐻0 = (4.1± 1.1) km/s/Mpc
between antipodal directions along the dipole axis. In the the second panel we replace 𝑧 with 𝑧ℎ

in the distance modulus formula, i.e. we correct the redshift for the peculiar velocity of the objects

12
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Figure 8: left panel: Solid and dashed lines represent positive and negative isocontours of Δ𝐻0 = 𝐻𝑎𝑝𝑒𝑥 −
𝐻

𝑎𝑛𝑡𝑖𝑎𝑝𝑒𝑥

0 calculated using Pantheon SNe with angular separation ≤ 60◦ from an axis of coordinates
(𝑙, 𝑏). Different thicknesses correspond to different amplitudes, as indicated by the labels. Isocontours are
superimposed to the smoothed signal-to-noise map. Central panel: as above, but after subtracting from
the redshift of each object the peculiar velocities listed in the Pantheon catalog. Right panel: as above,
but after correcting the redshift using the 𝜂(𝛼) model (9) with Fourier coefficients computed from the
CF3g data (and quoted in the second row of TABLE 2). The maximum antipodal anisotropy detected are
(𝑙, 𝑏,Δ𝐻0) = (305, 30, 4.1 ± 1.1), (305, 30, 2.4 ± 1.1) and (360, 40, 1.9 ± 0.9) respectively.

as done by the compilers of the Pantheon sample, i.e. by using the model of [26](we refer to this
redshift as to the Hubble diagram redshift). In the third panel we show the Hubble constant obtained
by fitting data after correcting the distance modulus to subtract the expansion rate fluctuations 𝜂,
i.e. by means of the formula

𝜇 = 5 log
(
𝑧

𝐻0

)
+ 25 − 5𝜂. (13)

Here 𝜂 is approximated using the Legendre expansion (9) with Fourier coefficients computed from
an independentdata sample, the iCF3g galaxy data. These coefficients are quoted in the second
row of TABLE 2. As we can see in FIG. 8, correcting for anisotropic motions using the Hubble
diagram redshift reduces the amplitude of the dipolar anisotropy in both amplitude and signal to
noise ratio. Indeed, the systematic difference in 𝐻0 measurements in antipolar directions is reduced
to Δ𝐻0 = (2.4 ± 1.1) km/s/Mpc once model-dependent correction for peculiar velocity flows are
implemented. However the residuals still show the presence of an anisotropic signal with a non-
trivial dipolar structure which is incompatible with being a residual fluctuation of random nature. A
better subtraction of peculiar motion effects is achieved by implementing the 𝜂 correction scheme,
as can be seen in the right panel of FIG. 8. In this latter case, the distribution of residual fluctuations
Δ𝐻0 has not only an amplitude which effectively vanishes, but is also consistently centered on
zero, no dipole structure being present anymore. As a result, the value of the best fitting 𝐻0 is
systematically revised upwards by nearly 0.7 km/s/Mpc (about 2𝜎) compared to the value deduced
from the Hubble diagram using the uncorrected observed redshift. The goodness of fit is also
improved.
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6. Conclusion

We have designed an observable that captures, in a statistically unbiased way, the average
angular fluctuations in the local expansion rate. This quantity allows to characterize anisotropies as
well as non-linearities in the redshift-distance relation in a model-independent way.

We have estimated the 𝜂 field using catalogs of redshift-independent distances such as the
Cosmicflows-3 galaxy sample and the Pantheon sample of supernovae. We have then compressed
the resulting signal into independent spherical harmonics components to better analyse the structure
of the anisotropies in the redshift-distance relation.

All data samples analyzed consistently suggest the existence of a preferred axis in the local
universe (0.01 < 𝑧 < 0.05), in the direction (𝑙, 𝑏) = (285±5, 11±4), along which the local redshift-
distance relation displays a dipolar pattern, and this is mainly related to the average peculiar velocity
𝑣𝑏 = (299 ± 22) km/s in that direction.

Interestingly, the SH analysis suggests that a simple dipole provides a poor representation of
the angular fluctuations in the local expansion rate. We find, that about 50% of the anisotropic
signal is contributed by a quadrupole component. This is independently confirmed by the CF3g and
CF3sn samples, which also consistently show that the axis of the maximum of the quadrupole is
aligned with the direction of the dipole. This intriguing feature persists when the sample is split in
two and the analysis is repeated in two separate spherical shells of different depths. The analyses of
both samples also agree on the shape of the quadrupole. It is a rather axisymmetrical configuration,
with no indication of prominent secondary axes. Furthermore, we find a relatively large signal for
the octupole at least for the CF3 sample of galaxies. Its configuration is also quite peculiar, with its
axis of maximal intensity colinear with the axes of the dipole and the quadrupole.

After factoring out from the Pantheon sample the contribution of these peculiar velocities
(reconstructed by applying prescriptions of the theory of linear perturbations to the observed
fluctuations in the spatial distribution of galaxies), we observe that the 𝐻0 perturbations, although
reduced in amplitude, do not distribute as random (Gaussian) residuals. Curiously, the structure of
the expansion rate field still presents an axial anisotropy in the same general direction as the CMB
dipole.

In this regard, we show how to exploit the expansion rate fluctuation field 𝜂 to subtract redshift
anisotropies. In practice, we correct the distance moduli of the Pantheon sample with a neat
three-parameter formula (see eq. (9)) calibrated using the independent sample CF3g. Despite its
simplicity, the approach is efficient to remove the anisotropy of the redshift-distance relation for
Pantheon sample.

To conclude, a key objective has been to show, as a proof-of-concept, the potential power of
a new observable, the expansion rate fluctuation 𝜂, both to study the structure of the anisotropies
in the redshift-distance relation and to minimize eventual systematics in the locally inferred value
of 𝐻0. It is thus necessary, in follow-up papers, to build on the current formalism by doing a more
intensive data analysis. This will include the use of updated and expanded data sets, including
Cosmicflows-4 [27], Pantheon+ [28]. The longterm goal is to asses whether and which proposal for
a non-standard metric faithfully describes the multipolar anisotropy pattern detected in our analysis.
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