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Starobinsky-Type 𝐵 − 𝐿 Higgs Inflation Leading Beyond MSSM C. Pallis

1. Introduction

It is well-known [1–3] that one of the possible incarnations of Starobisky-type inflation [4]
in Supergravity (SUGRA) can be relied on the hypothesis of induced gravity [5–7]. According to
this, inflation is driven in the presence of a non-minimal coupling among the inflaton field and the
Ricci scalar curvature, 𝑓𝑅, such that the reduced Planck mass 𝑚P is determined by a large (close
to Planckian scale 𝑚P) vacuum expectation value (v.e.v) of the inflaton at the end of the slow roll.
This is to be contrasted to the case of non-minimal [8–10] or pole-induced [11] Higgs inflation
where the v.e.v of inflaton is negligible. In this talk we focus on the implementation of this scenario
employing as inflaton a Higgs field within an “elementary” Grand Unified Theory (GUT) which
extends the gauge symmetry of the Standard Model (SM) by a𝑈 (1)𝐵−𝐿 factor [12]. In a such case,
the unification condition within Minimal Supersymmetric SM (MSSM) may be employed to uniquely
determined the strength of 𝑓𝑅 giving rise to an economical, predictive and well-motivated setting,
thereby called Induced-gravity Higgs inflation (IHI) – cf. Ref. [13].

Here, we concentrate on the simplest models of IHI introduced in Ref. [12] considering
exclusively integer prefactors for the logarithms included in the Kähler potentials. The particle
physics framework of our presentation is described in Sec. 2 whereas the engineering of induced-
gravity hypothesis is outlined in Sec. 3. The inflationary part of this context is investigated in Sec. 4.
Then, in Sec. 5, we explain how the MSSM is obtained as a low energy theory and, in Sec. 6, we
outline how the observed baryon asymmetry of the universe (BAU) is generated via non-thermal
leptogenesis (nTL). Our conclusions are summarized in Sec. 7. Throughout the text, the subscript
of type , 𝑧 denotes derivation with respect to (w.r.t) the field 𝑧 and charge conjugation is denoted by
a star. Unless otherwise stated, we use units where 𝑚P = 2.433 · 1018 GeV is taken unity.

2. Particle Physics Embedding

We focus on a “GUT” based on 𝐺𝐵−𝐿 = 𝐺SM ×𝑈 (1)𝐵−𝐿 , where 𝐺SM = 𝑆𝑈 (3)C × 𝑆𝑈 (2)L ×
𝑈 (1)𝑌 is the gauge group of the SM and 𝐵 and 𝐿 denote the baryon and lepton number respectively.
We below – see Secs. 2.1 and 2.2 – present the basic ingredients of our proposal.

2.1 Superpotential

The superpotential of our model naturally splits into four parts:

𝑊 = 𝑊MSSM +𝑊HI +𝑊𝜇 +𝑊RHN, where (1)

(a) 𝑊MSSM is the part of𝑊 which contains the usual terms – except for the 𝜇 term – of MSSM,
supplemented by Yukawa interactions among the left-handed leptons (𝐿𝑖) and 𝑁𝑐

𝑖
:

𝑊MSSM = ℎ𝑖 𝑗𝐷𝑑
𝑐
𝑖 𝑄 𝑗𝐻𝑑 + ℎ𝑖 𝑗𝑈𝑢𝑐𝑖𝑄 𝑗𝐻𝑢 + ℎ𝑖 𝑗𝐸𝑒𝑐𝑖 𝐿 𝑗𝐻𝑑 + ℎ𝑖 𝑗𝑁𝑁𝑐𝑖 𝐿 𝑗𝐻𝑢. (2.2a)

Here the 𝑖th generation 𝑆𝑈 (2)L doublet left-handed quark and lepton superfields are denoted by 𝑄𝑖
and 𝐿𝑖 respectively, whereas the 𝑆𝑈 (2)L singlet antiquark [antilepton] superfields by 𝑢𝑐

𝑖
and 𝑑𝑖𝑐

[𝑒𝑐
𝑖

and 𝑁𝑐
𝑖
] respectively. The electroweak Higgs superfields which couple to the up [down] quark

superfields are denoted by 𝐻𝑢 [𝐻𝑑]. Note that the introduction of three right-handed neutrinos, 𝑁𝑐
𝑖
,

is necessary to cancel the 𝐵 − 𝐿 gauge anomaly.
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Superfields Representations Global Symmetries
under 𝐺𝐵−𝐿 𝑅 𝐵 𝐿

Matter Fields
𝑒𝑐
𝑖

(1, 1, 1, 1) 1 0 −1
𝑁𝑐
𝑖

(1, 1, 0, 1) 1 0 −1
𝐿𝑖 (1, 2,−1/2,−1) 1 0 1
𝑢𝑐
𝑖

(3, 1,−2/3,−1/3) 1 −1/3 0
𝑑𝑐
𝑖

(3, 1, 1/3,−1/3) 1 −1/3 0
𝑄𝑖 (3̄, 2, 1/6, 1/3) 1 1/3 0

Higgs Fields
𝐻𝑑 (1, 2,−1/2, 0) 0 0 0
𝐻𝑢 (1, 2, 1/2, 0) 0 0 0
𝑆 (1, 1, 0, 0) 2 0 0
Φ (1, 1, 0, 2) 0 0 −2
Φ̄ (1, 1, 0,−2) 0 0 2

Table 1: Representations under 𝐺𝐵−𝐿 and extra global charges of the superfields of our model.

(b) 𝑊HI is the part of𝑊 which is relevant for IHI and takes the form

𝑊HI = 𝜆𝑆
(
Φ̄Φ − 𝑀2/4

)
. (2.2b)

The imposed 𝑈 (1)𝑅 symmetry ensures the linearity of 𝑊HI w.r.t 𝑆. This fact allows us to isolate
easily via its derivative the contribution of the inflaton into the F-term SUGRA potential, placing
𝑆 at the origin – see Sec. 4.1. The inflaton is contained in the system Φ̄ − Φ. We are obliged
to restrict ourselves to subplanckian values of Φ̄Φ since the imposed symmetries do not forbid
non-renormalizable terms of the form (Φ̄Φ) 𝑝 with 𝑝 > 1 – see Sec. 4.2.

(c) 𝑊𝜇 is the part of 𝑊 which is responsible for the generation of the 𝜇 term of MSSM and
takes the form

𝑊𝜇 = 𝜆𝜇𝑆𝐻𝑢𝐻𝑑 . (2.2c)

As𝑊HI,𝑊𝜇 is also linear to 𝑆 and so, the imposed 𝑈 (1)𝑅 plays also a key role in the resolution of
the 𝜇 problem of MSSM – see Sec. 5.

(d) 𝑊RHN is the part of𝑊 which provides Majorana masses for netrinos and reads

𝑊RHN = 𝜆𝑖𝑁𝑐Φ̄𝑁𝑐2
𝑖 . (2.2d)

The same term assures the decay of the inflaton to 𝑁𝑐
𝑖
, whose subsequent decay can activate nTL

[14]. Here, we work in the so-called 𝑁𝑐
𝑖
-basis, where 𝑀𝑖𝑁𝑐 is diagonal, real and positive. These

masses, together with the Dirac neutrino masses of the forth term in Eq. (2.2a), lead to the light
neutrino masses via the seesaw mechanism – see Sec. 6.2.
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2.2 Kähler Potentials

The objectives of our model are feasible if 𝑊 in Eq. (1) cooperates with one of the following
Kähler potentials:

𝐾1 = −3 ln
(
𝑐𝑅 (𝐹𝑅 + 𝐹∗

𝑅) −
|Φ|2 + |Φ̄|2

3
+ 𝐹1𝑋 ( |𝑋 |2)

)
with 𝐹1𝑋 = − ln

(
1 + |𝑋 |2

3

)
,(2.3a)

𝐾2 = −2 ln
(
𝑐𝑅 (𝐹𝑅 + 𝐹∗

𝑅) −
|Φ|2 + |Φ̄|2

2

)
+ 𝐹2𝑋 ( |𝑋 |2) with 𝐹2𝑋 = 𝑁𝑋 ln

(
1 + |𝑋 |2

𝑁𝑋

)
,(2.3b)

where 𝐹𝑅 = ΦΦ̄, 0 < 𝑁𝑋 < 6, 𝑋𝛾 = 𝑆, 𝐻𝑢, 𝐻𝑑 , 𝑁
𝑐
𝑖

and the complex scalar components of the
superfields Φ, Φ̄, 𝑆, 𝐻𝑢 and 𝐻𝑑 are denoted by the same symbol whereas this of 𝑁𝑐

𝑖
by 𝑁𝑐

𝑖
. We

assume that 𝑋𝛾 have identical kinetic terms expressed by the functions 𝐹𝑙𝑋 with 𝑙 = 1, 2. These
functions ensures the stability and the heaviness of these modes [15] employing exclusively quadratic
terms. Both 𝐾’s reduce to the same 𝐾0 for 𝑋𝛼 = 0 with the aid of the frame function Ω defined as

𝐾0 = −𝑁 ln
(
−Ω

𝑁

)
with

Ω

𝑁
= −𝑐𝑅 (𝐹𝑅 + 𝐹∗

𝑅) +
|Φ|2 + |Φ̄|2

𝑁
and 𝑁 =

{
3 for 𝐾 = 𝐾1,

2 for 𝐾 = 𝐾2.
(4)

Henceforth, 𝑁 assists us to unify somehow the two 𝐾’s considered in Eqs. (2.3a) and (2.3b).

3. SUGRA Version of Induced-Gravity Conjecture

The scale 𝑀 and the function 𝐹𝑅 involved in Eqs. (2.2b), (2.3a) and (2.3b) assist us in the
implementation of the idea of induced gravity. To explain how it works, we introduce our notation
in the two relevant frames in Sec. 3.1 and then, in Sec. 3.2, we derive the SUSY vacuum which
plays a key role imposing the induced-gravity condition – see Sec. 3.3.

3.1 From Einstein to Jordan Frame

We concentrate on 𝑊HI and extract the part of the Einstein frame (EF) action within SUGRA
related to the complex scalars 𝑧𝛼 = 𝑆,Φ, Φ̄. This has the form [12]

S =

∫
𝑑4𝑥

√︁
−ĝ

(
−1

2
𝑅 + 𝐾𝛼𝛽 �̂�𝜇𝜈𝐷𝜇𝑧𝛼𝐷𝜈𝑧∗𝛽 −𝑉SUGRA

)
, (5)

where 𝑅 is the EF Ricci scalar curvature, 𝐷𝜇 is the gauge covariant derivative, 𝐾𝛼𝛽 = 𝐾,𝑧𝛼𝑧∗�̄� , and
𝐾𝛼𝛽𝐾𝛽𝛾 = 𝛿𝛼𝛾 and g is the determinant of the EF metric �̂�𝜇𝜈 . Also, 𝑉 is the EF SUGRA potential
which can be found in terms of𝑊HI in Eq. (2.2b) and the 𝐾’s in Eqs. (2.3a) – (2.3b) via the formula

𝑉SUGRA = 𝑉F+𝑉D with 𝑉F = 𝑒𝐾
(
𝐾𝛼𝛽 (𝐷𝛼𝑊HI)𝐷∗

𝛽
𝑊∗

HI − 3|𝑊HI |2
)

and 𝑉D =
𝑔2
𝐵𝐿

2
D2
𝐵𝐿 . (3.6a)

Here the Kähler covariant derivative reads 𝐷𝛼𝑊HI = 𝑊HI,𝑧𝛼 + 𝐾,𝑧𝛼𝑊HI whereas the D term due to
𝐵 − 𝐿 symmetry is found to be

D𝐵𝐿 =

(
|Φ|2 − |Φ̄|2

)
/(−Ω/𝑁). (3.6b)
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As induced by Eqs. (4) and (3.6b), the field configuration

⟨Φ⟩I = ⟨Φ̄⟩I and ⟨𝑋𝛼⟩I = 0, (7)

assures ⟨𝑉D⟩I = 0 where the symbol ⟨𝑄⟩I denotes values of a quantity 𝑄 along the path of Eq. (7).
Henceforth, we confine ourselves to this path – assuming in addition that arg(Φ) = arg(Φ̄) – which
is a honest inflationary trajectory, supporting IHI driven exclusively by 𝑉F.

The performance of a conformal transformation after defining the Jordan Frame (JF) metric as

𝑔𝜇𝜈 = −Ω

𝑁
�̂�𝜇𝜈 yields [12] via Eq. (5) S =

∫
𝑑4𝑥

√−𝑔
(
Ω

2𝑁
𝑅 − · · ·

)
(8)

which reveals that −Ω/𝑁 plays the role of a (dimensionless) non-minimal coupling to gravity –
here we use unhatted symbols for the JF quantities and the ellipsis includes terms irrelevant for
our discussion. Comparing Eq. (4) with the 𝐾’s in Eqs. (2.3a) and (2.3b) we can infer that the
emergence of Einstein gravity at the vacuum dictates

−⟨Ω/𝑁⟩ = 2(𝑁𝑐𝑅 + 1)⟨Φ⟩2/𝑁 = 1, (9)

where we assume that ⟨Φ⟩ is included in the inflationary trough of Eq. (7). Its value as a function
of the model parameters is calculated in the next section.

3.2 SUSY Potential

The implementation of the IHI requires the generation of𝑚P at the vacuum of the theory. It can
be determined expanding 𝑉SUGRA in powers of 1/𝑚P. Namely, we obtain the following low-energy
effective potential which plays the role of SUSY one

𝑉SUSY =

〈
𝐾𝛼𝛽𝑊HI𝛼𝑊

∗
HI𝛽

〉
I
+ · · · , (3.10a)

where the ellipsis represents terms proportional to 𝑊HI or |𝑊HI |2 which obviously vanish along
the path in Eq. (7). Also, 𝐾 is the limit of the 𝐾’s in Eqs. (2.3a) and (2.3b) for 𝑚P → ∞. The
absence of unity in the arguments of the logarithms multiplied by 𝑁 in these 𝐾’s prevents the drastic
simplification of 𝐾 – cf. Ref. [10]. As a consequence, the expression of the resulting 𝑉SUSY is
rather lengthy. For this reason we confine ourselves below to 𝐾 = 𝐾2 where 𝐹2𝑆 is placed outside
the first logarithm in Eq. (2.3a) and so 𝐾 can be somehow simplified. Namely, we get

𝐾 = −𝑁 ln (−Ω/𝑁) + |𝑆 |2 , (3.10b)

from which we can then compute(
⟨𝐾𝛼𝛽⟩I

)
= diag

(
𝑀Φ̄Φ, 1

)
with 𝑀Φ̄Φ =

2
⟨Ω⟩2

I

(4𝑐𝑅 − 1) |Φ|2 |2𝑐𝑅Φ −Φ∗ |2
|2𝑐𝑅Φ −Φ∗ |2 (4𝑐𝑅 − 1) |Φ|2

. (3.11a)

To compute 𝑉SUSY we need to know

⟨𝐾𝛼𝛽⟩I = diag
(
𝑀−1

Φ̄Φ
, 1

)
, where 𝑀−1

Φ̄Φ
= −

⟨Ω⟩2
I

2det𝑀Φ̄Φ

−(4𝑐𝑅 − 1) |Φ|2 |2𝑐𝑅Φ −Φ∗ |2
|2𝑐𝑅Φ −Φ∗ |2 −(4𝑐𝑅 − 1) |Φ|2

,
(3.11b)

5
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where the prefactor can be explicitly written as

⟨Ω⟩2
I

det𝑀Φ̄Φ

=
|Φ|2 − 𝑐𝑅 (Φ2 −Φ∗2)

𝑐𝑅 (Φ2 +Φ∗2 − 4𝑐𝑅 |Φ|2)
(3.11c)

Upon substitution of Eq. (3.11b) into Eq. (3.10a) we obtain

𝑉SUSY ≃ 𝜆2
����Φ̄Φ − 1

4
𝑀2

����2 + ⟨Ω⟩2
I

det𝑀Φ̄Φ

𝜆2 |𝑆 |2 |Φ|2
(
(4𝑐2

𝑅 − 1) |Φ|2 − |Φ − 2𝑐𝑅Φ∗ |2
)
. (12)

We remark that the SUSY vacuum lies along the direction in Eq. (7) with

⟨𝑆⟩ = 0 and |⟨Φ⟩| = |⟨Φ̄⟩| = 𝑀/2, (13)

where ⟨𝑆⟩ may slightly deviate from its value above after inclusion of soft SUSY breaking effects
– see Sec. 5.1. The result in Eq. (13) holds also for 𝐾 = 𝐾1 as we can verify after a more tedious
computation. From Eq. (13) it is clear that ⟨Φ⟩ and ⟨Φ̄⟩ spontaneously break 𝑈 (1)𝐵−𝐿 down to
Z𝐵−𝐿2 . Note that 𝑈 (1)𝐵−𝐿 is already broken during IHI and so no cosmic string are formed – see
Sec. 4.2.

3.3 Induced-Gravity Requirement

Inserting Eq. (13) into Eq. (9) we deduce that the conventional Einstein gravity can be recovered
at the vacuum if

𝑀 =
√︁

2𝑁/(𝑁𝑐𝑅 − 1). (14)

As we show in Sec. 4.3, the GUT requirement offers the prediction 𝑐𝑅 ∼ 104. Therefore, the
resulting 𝑀 has a size comparable to 𝑚P as expected from the establishment of the theory in
Sec. 2.1.

4. Inflationary Scenario

The salient features of our inflationary scenario are studied at tree level in Sec. 4.1 and at
one-loop level in Sec. 4.2. We then present its predictions in Sec. 4.3.

4.1 Inflationary Potential

If we express Φ, Φ̄ and 𝑋𝛾 = 𝑆, 𝐻𝑢, 𝐻𝑑 , 𝑁
𝑐
𝑖

according to the parametrization

Φ = 𝜙 𝑒𝑖 𝜃 cos 𝜃Φ/
√

2, Φ̄ = 𝜙 𝑒𝑖 𝜃 sin 𝜃Φ/
√

2 and 𝑋𝛾 = (𝑥𝛾 + 𝑖𝑥𝛾) /
√

2 , where 0 ≤ 𝜃Φ ≤ 𝜋/2,
(15)

the D-flat direction in Eq. (7) is now expressed as

𝑥𝛾 = 𝑥𝛾 = 𝜃 = 𝜃 = 𝐻𝑢 = 𝐻𝑑 = 𝑁𝑐𝑖 = 0 and 𝜃Φ = 𝜋/4 . (16)

Along this, the only surviving term of 𝑉SUGRA in Eq. (3.6a) – extended to all fields above – can be
written as

𝑉IHI = 𝑒
𝐾𝐾𝑆𝑆

∗ |𝑊HI,𝑆 |2 =
𝜆2(𝜙2 − 𝑀2)2

16 𝑓 𝑁
𝑅

·
{
𝑓𝑅 for 𝐾 = 𝐾1,

1 for 𝐾 = 𝐾2,
where 𝑓𝑅 = −

〈
Ω

𝑁

〉
I
=

(𝑁𝑐𝑅 − 1)𝜙2

2𝑁
(17)
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Fields Einge- Masses Squared
states 𝐾 = 𝐾1 𝐾 = 𝐾2

14 Real �̂�+ 𝑚2
𝜃+ 4𝐻2

IHI 6𝐻2
IHI

Scalars �̂�Φ 𝑚2
𝜃Φ

𝑀2
𝐵𝐿

𝑀2
𝐵𝐿

�̂�,̂̄𝑠 𝑚2
𝑠 𝐻2

IHI (𝑐𝑅𝜙
2 − 9) 6𝐻2

IHI/𝑁𝑋
ℎ̂±,

̂̄ℎ± 𝑚2
ℎ± 3𝐻2

IHI𝑐𝑅
(
𝜙2/6 ± 2𝜆𝜇/𝜆

)
3𝐻2

IHI
(
1 + 1/𝑁𝑋 ± 4𝜆𝜇/𝜆𝜙2)̂̃𝜈𝑐𝑖 , ̂̃̄𝜈𝑐𝑖 𝑚2

𝑖�̃�𝑐
3𝐻2

IHI𝑐𝑅
(
𝜙2/6 + 8𝜆2

𝑖𝑁𝑐/𝜆2) 3𝐻2
IHI

(
1 + 1/𝑁𝑋 + 16𝜆2

𝑖𝑁𝑐/𝜆2𝜙2)
1 Gauge Boson 𝐴𝐵𝐿 𝑀2

𝐵𝐿
2𝑁𝑔2/(𝑁𝑐𝑅 − 1)

7 Weyl 𝜓± 𝑚2
𝜓± 12𝐻2

IHI/𝑐
2
𝑅
𝜙4

Spinors λ𝐵𝐿 , 𝜓Φ− 𝑀2
𝐵𝐿

2𝑁𝑔2/(𝑁𝑐𝑅 − 1)
𝑁𝑐
𝑖

𝑚2
𝑖𝑁𝑐 48𝐻2

IHI𝑐𝑅𝜆
2
𝑖𝑁𝑐/𝜆2𝜙2

Table 2: The mass squared spectrum of our models along the path in Eq. (4.2) for 𝜙 ≪ 1 and 𝑁’s defined
in Eq. (2.4).

– see Eq. (4). Clearly𝑉IHI develops an inflationary plateau as in the original Starobisky inflationary
model [1, 16]. To specify the EF canonically normalized fields, we note that, for the 𝐾’s in
Eqs. (2.3a) and (2.3b), 𝐾𝛼𝛽 along the configuration in Eq. (16) takes the form

⟨𝐾𝛼𝛽⟩I = diag
©«𝑀Φ̄Φ, 𝐾𝛾�̄� , ..., 𝐾𝛾�̄�︸         ︷︷         ︸

8 elements

ª®®®¬ with 𝑀Φ̄Φ =
𝜅 𝜅

𝜅 𝜅

 and 𝐾𝛾�̄� =

{
𝑓 −1
𝑅

for 𝐾 = 𝐾1 ,

1 for 𝐾 = 𝐾2 ,

(18)
where 𝜅 = (1 + 𝑁𝑐𝑅)/2 𝑓𝑅 and 𝜅 = 𝑁/𝜙2. Upon diagonalization of 𝑀Φ̄Φ we find its eigenvalues
which are

𝜅+ = 𝑁𝑐𝑅/ 𝑓𝑅 and 𝜅− = 1/ 𝑓𝑅 . (19)

Note that the existence of the real terms |Φ|2 + |Φ̄|2 in Eqs. (2.3a) and (2.3b) is vital for our models,
since otherwise the off diagonal elements of 𝑀Φ̄Φ would have been zero, one of the eigenvalues
above would have been zero and so no 𝑀−1

Φ̄Φ
could have been defined.

Inserting Eqs. (15) and (18) into the kinetic term of S in Eq. (5) we can specify the canonically
normalized (hatted) fields, as follows

𝑑𝜙

𝑑𝜙
= 𝐽, �̂�+ =

𝐽
√

2
𝜙𝜃+, �̂�− =

√︂
𝜅−
2
𝜙𝜃−, �̂�Φ =

√
𝜅−𝜙

(
𝜃Φ − 𝜋

4

)
and (�̂�𝛾 ,̂̄𝑥𝛾) = √︁

𝐾𝛾�̄� (𝑥𝛾 , 𝑥𝛾) ,
(20)

where 𝐽 =
√
𝜅+ and 𝜃± =

(
𝜃 ± 𝜃

)
/
√

2. As we show below, the masses of the scalars besides 𝜙
during IHI are heavy enough such that the dependence of the hatted fields on 𝜙 does not influence
their dynamics.

4.2 Stability and one-Loop Radiative Corrections

We can verify that the inflationary direction in Eq. (16) is stable w.r.t the fluctuations of the
non-inflaton fields. To this end, we construct the mass-squared spectrum of the scalars taking into

7
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account the canonical normalization of the various fields in Eq. (20). In the limit 𝑐𝑅 ≫ 1, we find
the expressions of the masses squared𝑚2

𝑧𝛼 (with 𝑧𝛼 = 𝜃+, 𝜃Φ, 𝑥𝛾 and 𝑥𝛾) arranged in Table 2. These
results approach rather well for 𝜙 = 𝜙★ – see Sec. 4.2 – the quite lengthy, exact expressions taken
into account in our numerical computation. The various unspecified there eigenstates are defined
as follows

ℎ̂± = ( ℎ̂𝑢 ± ℎ̂𝑑)/
√

2, ̂̄ℎ± = (̂̄ℎ𝑢 ± ̂̄ℎ𝑑)/√2 and 𝜓± = (𝜓Φ+ ± 𝜓𝑆)/
√

2, (4.21a)

where the (unhatted) spinors 𝜓Φ and 𝜓Φ̄ associated with the superfields Φ and Φ̄ are related to the
normalized (hatted) ones in Table 2 as follows

𝜓Φ± =
√
𝜅±𝜓Φ± with 𝜓Φ± = (𝜓Φ ± 𝜓Φ̄)/

√
2 . (4.21b)

From Table 2 it is evident that 0 < 𝑁𝑋 ≤ 6 assists us to achieve 𝑚2
𝑠 > 𝐻2

IHI = 𝑉IHI/3 – in
accordance with the results of Ref. [15] – and also enhances the ratios 𝑚2

𝑋�̃�/𝐻2
IHI for 𝑋 �̃� = ℎ+, �̃�𝑐𝑖

w.r.t the values that we would have obtained, if we had used just canonical terms in the 𝐾’s. On the
other hand, 𝑚2

ℎ− > 0 implies

𝜆𝜇 ≲ 𝜆𝜙
2/4𝑁 for 𝐾 = 𝐾1 and 𝜆𝜇 ≲ 𝜆𝜙

2(1 + 1/𝑁𝑋)/4 for 𝐾 = 𝐾2 . (22)

In both cases, the quantity in the right-hand side of the inequalities takes its minimal value at 𝜙 = 𝜙f

– see Sec. 4.2 – and numerically equals to 2 · 10−5 − 5 · 10−6. In Table 2 we display also the mass
𝑀𝐵𝐿 of the gauge boson 𝐴𝐵𝐿 which becomes massive having ‘eaten’ the Goldstone boson 𝜃−.
This signals the fact that 𝐺𝐵−𝐿 is broken during IHI and so no cosmological defects are produced.
Also, we can verify [12] that radiative corrections á la Coleman-Weinberg can be kept under control
provided that we conveniently select the relevant renormalization mass scale involved.

4.3 SUSY Gauge Coupling Unification

The value of 𝑀𝐵𝐿 in Table 2 computed at the vacuum of Eq. (13), ⟨𝑀𝐵𝐿⟩, may in principle,
be unconstrained since 𝑈 (1)𝐵−𝐿 does not disturb the unification of the MSSM gauge coupling
constants. To be more specific, though, we prefer to determine 𝑀𝐵𝐿 by requiring that it takes the
value 𝑀GUT dictated by this unification at the vacuum of Eq. (13). Namely, we impose

⟨𝑀𝐵𝐿⟩ = 𝑀GUT ≃ 2/2.43 · 10−2 = 8.22 · 10−3 . (23)

This simple principle has an important consequence for IHI, since it implies via the findings of
Table 2

𝑐𝑅 =
1
𝑁

+
2𝑔2
𝐵𝐿

𝑀2
GUT

≃ 1.451 · 104 , (24)

leading to 𝑀 ≃ 0.0117 via Eq. (14). Here we take 𝑔𝐵𝐿 ≃ 0.7 which is the value of the unified
coupling constant within MSSM.

Although 𝑐𝑅 above is very large, there is no problem with the validity of the effective theory,
in accordance with the results of earlier works [1, 3, 7]. To clarify further this point, we have to
identify the ultraviolet cut-off scale ΛUV of theory analyzing the small-field behavior of our models.
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Indeed, expanding about ⟨𝜙⟩ = 𝑀 – see Eq. (14) – the second term in the r.h.s of Eq. (5) for
𝜇 = 𝜈 = 0 and 𝑉IHI in Eq. (17) we obtain

𝐽2 ¤𝜙2 ≃
(
1 −

√︂
2
𝑁
𝛿𝜙 + 3

2𝑁
𝛿𝜙

2 −
√︂

2
𝑁3 𝛿𝜙

3 + · · ·
)

¤̂
𝛿𝜙

2
, (4.25a)

where 𝛿𝜙 is the canonically normalized inflaton at the vacuum – see Sec. 6.1 – and

𝑉IHI ≃
𝜆2𝛿𝜙

2

2𝑁𝑐2
𝑅

(
1 − 2𝑁 − 1

√
2𝑁

𝛿𝜙 + 8𝑁2 − 4𝑁 + 1
8𝑁

𝛿𝜙
2 + · · ·

)
. (4.25b)

These expressions indicate that ΛUV = 𝑚P, since 𝑐𝑅 does not appear in any of their numerators.

4.4 Inflationary Observables

A period of slow-roll IHI is controlled by the strength of the slow-roll parameters

�̂� =
1
2

(
𝑉IHI,𝜙

𝑉IHI

)2

≃ 16
𝑓 2
W

𝑁𝑐4
𝑅
𝜙8

and 𝜂 =
𝑉IHI,𝜙𝜙

𝑉IHI
≃ 8

2 − 𝑓W

𝑁 𝑓 2
W

with 𝑓W = 𝑐𝑅𝜙
2 − 2. (26)

Expanding �̂� and 𝜂 for 𝜙 ≪ 1 we can find that IHI terminates for 𝜙 = 𝜙f such that

max{�̂� (𝜙f), |𝜂(𝜙f) |} = 1 ⇒ 𝜙f ≃ max
©«

2√︃
𝑐𝑅

√
𝑁

, 2
√︂

2
𝑁𝑐𝑅

ª®®¬ . (27)

The number of e-foldings, 𝑁★, that the pivot scale 𝑘★ = 0.05/Mpc suffers during IHI can be
calculated through the relation

𝑁★ =

∫ 𝜙★

𝜙f

𝑑𝜙
𝑉IHI

𝑉IHI,𝜙

≃ 𝑁𝑐𝑅

8
𝜙2
★ ⇒ 𝜙★ ≃ 2

(
2𝑁★
𝑁𝑐𝑅

)1/2

≃
{

0.11, 𝐾 = 𝐾1,

0.13, 𝐾 = 𝐾2,
(28)

where 𝜙★ [𝜙★] with 𝜙★ ≫ 𝜙f is the value of 𝜙 [𝜙] when 𝑘★ crosses the inflationary horizon. Thanks
to large 𝑐𝑅 in Eq. (24), 𝜙★ ≪ 1 and therefore, our proposal is automatically well stabilized against
corrections from higher order terms of the form (ΦΦ̄) 𝑝 with 𝑝 > 1 in𝑊HI – see Eq. (2.2b).

The normalization of the amplitude, 𝐴s, of the power spectrum of the curvature perturbations
generated by 𝜙 at the pivot scale 𝑘★ allows us to determine 𝜆 as follows

√︁
𝐴s =

1
2
√

3 𝜋
𝑉IHI(𝜙★)3/2

|𝑉IHI,𝜙 (𝜙★) |
= 4.58 ·10−5 ⇒ 𝜆 = 32𝜋

√︁
6𝑁𝐴s𝑐𝑅

𝑁★

(4𝑁★ − 𝑁)2
≃

{
0.29, 𝐾 = 𝐾1,

0.24, 𝐾 = 𝐾2.

(29)
The resulting relation reveals that 𝜆 is proportional to 𝑐𝑅. For these 𝜆 values we display 𝑉IHI as
a function of 𝜙 in Fig. 1. We observe that 𝑉IHI is a monotonically increasing function of 𝜙. The
inflationary scale, 𝑉1/4

IHI , approaches the SUSY GUT scale in Eq. (23) and lies well below ΛUV = 1,
consistently with the classical approximation to the inflationary dynamics.

9
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Figure 1: Inflationary potential 𝑉IHI as a function of 𝜙 for 𝜙 > 0, 𝑐𝑅 in Eq. (4.10) and 𝐾 = 𝐾1 (dark gray
line) or 𝐾 = 𝐾2 (light gray line) – the values of 𝜙★ and 𝜙f are also indicated.

At the pivot scale, we can also calculate the scalar spectral index, 𝑛s, its running, 𝑎s, and the
tensor-to-scalar ratio, 𝑟 , via the relations

𝑛s = 1 − 6�̂�★ + 2𝜂★ ≃ 1 − 2
𝑁★

= 0.963, 𝑟 = 16�̂�★ ≃ 4𝑁
𝑁2
★

= 0.0032 [0.0022], (4.30a)

𝑎s =
2
3

(
4𝜂2
★ − (𝑛s − 1)2

)
− 2𝜉★ ≃ − 2

𝑁2
★

− 7𝑁
2𝑁3

★

= −0.005 for 𝐾 = 𝐾1 [𝐾2] (4.30b)

with 𝜉 = 𝑉IHI,𝜙𝑉IHI,𝜙𝜙𝜙/𝑉2
IHI and the variables with subscript ★ are being evaluated at 𝜙 = 𝜙★.

The numerical values are obtained employing 𝑁★ ≃ (57.5 − 60) which corresponds to a quartic
potential. It is expected to approximate 𝑉IHI rather well for 𝜙 ≪ 1 [12].

The results above turn out to be in nice agreement with the fitting of the Planck (release 4)
[16], baryon acoustic oscillations, cosmic microwave background lensing and Bicep2/Keck Array
data [18] with the ΛCDM+𝑟 model, i.e.,

(a) 𝑛s = 0.965 ± 0.009 and (b) 𝑟 ≤ 0.032, (31)

at 95% confidence level (c.l.) with |𝑎s | ≪ 0.01.

5. IHI and 𝜇 Term of MSSM

A byproduct of our setting is that it assists us to understand the origin of 𝜇 term of MSSM, as
we show in Sec. 5.1, consistently with the low-energy phenomenology of MSSM – see Sec. 5.2.
Hereafter we restore units, i.e., we take 𝑚P = 2.433 · 1018 GeV.

5.1 Generation of the 𝜇 Term of MSSM

The contributions from the soft SUSY breaking terms, although negligible during IHI, since
these are much smaller than 𝜙 ∼ 𝑚P, may shift slightly ⟨𝑆⟩ from zero in Eq. (13). Indeed, the
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relevant potential terms are

𝑉soft =
(
𝜆𝐴𝜆𝑆Φ̄Φ + 𝜆𝜇𝐴𝜇𝑆𝐻𝑢𝐻𝑑 + 𝜆𝑖𝑁𝑐𝐴𝑖𝑁𝑐Φ𝑁𝑐2

𝑖 − a𝑆𝑆𝜆𝑀2/4 + h.c.
)
+ 𝑚2

𝛾 |𝑋𝛾 |2 , (32)

where 𝑚𝛾 , 𝐴𝜆, 𝐴𝜇, 𝐴𝑖𝑁𝑐 and a𝑆 are soft SUSY breaking mass parameters. Rotating 𝑆 in the real
axis by an appropriate 𝑅-transformation, choosing conveniently the phases of 𝐴𝜆 and a𝑆 so as the
total low energy potential 𝑉tot = 𝑉SUSY + 𝑉soft to be minimized – see Eq. (12) – and substituting in
𝑉soft the Φ and Φ̄ values from Eq. (13) we get

⟨𝑉tot(𝑆)⟩ = 𝜆2 (𝑁𝑐𝑅 − 1)𝑀4𝑆2

4𝑁2𝑚2
P𝑐𝑅

− 𝜆𝑀2𝑆a3/2𝑚3/2 with a3/2 = ( |𝐴𝜆 | + |a𝑆 |) /2𝑚3/2, (5.33a)

where𝑚3/2 is the gravitino (𝐺) mass and a3/2 > 0 is a parameter of order unity which parameterizes
our ignorance for the dependence of |𝐴𝜆 | and |a𝑆 | on𝑚3/2. We also take into account that𝑚𝑆 ≪ 𝑀 .
The extermination condition for ⟨𝑉tot(𝑆)⟩ w.r.t 𝑆 leads to a non vanishing ⟨𝑆⟩ as follows

𝑑⟨𝑉tot(𝑆)⟩/𝑑𝑆 = 0 ⇒ ⟨𝑆⟩ ≃ 𝑁𝑐𝑅a3/2𝑚3/2/𝜆, (5.33b)

where we make use of Eq. (14). The extremum above turns out to be a global minimum since
𝑑2⟨𝑉tot(𝑆)⟩/𝑑𝑆2 > 0. The generated 𝜇 term from the term in Eq. (2.2c) is

𝜇 = 𝜆𝜇⟨𝑆⟩ ≃
𝜆𝜇

32𝜋

√︂
𝑁

6𝐴s

(4𝑁★ − 𝑁)2

𝑁★
a3/2𝑚3/2, (34)

where we make use of Eq. (29) which reveals that the resulting 𝜇 above does not depend on 𝜆 and
𝑐𝑅. Thanks to the presence of

√
𝐴s ∼ 10−5 in the denominator any 𝜇/𝑚3/2 < 1 value is accessible

for 𝜆𝜇 ∼ 10−5 which is allowed by Eq. (22) without causing any ugly hierarchy between𝑚3/2 and 𝜇.
On the other hand, given that 𝑚3/2 is currently constrained beyond the TeV region a mild hierarchy
between 𝜇 and 𝑚3/2 assists us to alleviate the little hierarchy problem ameliorating the naturalness
of SUSY models after the LHC Higgs discovery [19].

5.2 Connection with the MSSM Phenomenology

The SUSY breaking effects, considered in Eq. (32), explicitly break 𝑈 (1)𝑅 to a subgroup,
Z𝑅2 which remains unbroken by ⟨𝑆⟩ in Eq. (5.33b) and so no disastrous domain walls are formed.
Combining Z𝑅2 with the Zf

2 fermion parity, under which all fermions change sign, yields the well-
known 𝑅-parity. This residual symmetry prevents rapid proton decay and guarantees the stability
of the lightest SUSY particle (LSP), providing thereby a well-motivated cold dark matter (CDM)
candidate.

The candidacy of LSP may be successful, if its abundance is consistent with the expectations
for it from the ΛCDM model [17] within a concrete low energy framework. We here adopt the
Constrained MSSM (CMSSM), which is relied on the following free parameters

sign𝜇, tan 𝛽 = ⟨𝐻𝑢⟩/⟨𝐻𝑑⟩, 𝑀1/2, 𝑚0 and 𝐴0, (35)

where sign𝜇 is the sign of 𝜇, and the three last mass parameters denote the common gaugino mass,
scalar mass and trilinear coupling constant, respectively, defined (normally) at 𝑀GUT. Imposing a
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CMSSM |𝐴0 | 𝑚0 |𝜇 | a3/2 𝜆𝜇 (10−6)

Region (TeV) (TeV) (TeV) 𝐾 = 𝐾1 𝐾 = 𝐾2

(I) 𝐴/𝐻 Funnel 9.9244 9.136 1.409 1.086 0.963 1.184
(II) 𝜏1 − 𝜒 Coannihilation 1.2271 1.476 2.62 0.831 14.48 17.81
(III) 𝑡1 − 𝜒 Coannihilation 9.965 4.269 4.073 2.33 2.91 3.41
(IV) �̃�±1 − 𝜒 Coannihilation 9.2061 9.000 0.983 1.023 0.723 0.89

Table 3: The required 𝜆𝜇 values which render our models compatible with the best-fit points in the CMSSM,
as found in Ref. [20], for the assumptions of Eq. (36), 𝑁𝑋 = 2, and 𝐾 = 𝐾1 or 𝐾 = 𝐾2.

number of cosmo-phenomenological constraints – from which the consistency of LSP relic density
with observations plays a central role – the best-fit values of |𝐴0 |, 𝑚0 and |𝜇 | can be determined
as in Ref. [20]. Their results are listed in the first four lines of Table 3. We see that there are four
allowed regions characterized by the specific mechanism for suppressing the relic density of the
LSP which is the lightest neutralino (𝜒) – 𝜏1, 𝑡1 and �̃�±1 stand for the lightest stau, stop and chargino
eigenstate whereas 𝐴/𝐻 is the CP-odd and heavier CP-even Higgs bosons of MSSM. The proposed
regions pass all the currently available LHC bounds [21] on the masses of the various sparticles.

Enforcing the conditions for the electroweak symmetry breaking a value for the parameter |𝜇 |
can be achieved in each of the regions in Table 3. Taking this |𝜇 | value as input we can extract the
𝜆𝜇 values, if we first derive a3/2 setting, e.g.,

𝑚0 = 𝑚3/2 and |𝐴0 | = |𝐴𝜆 | = |a𝑆 |. (36)

Here we ignore possible renormalization group effects. The outputs of our computation is listed in
the two rightmost columns of Table 3 for 𝐾 = 𝐾1 and 𝐾2. From these we infer that the required 𝜆𝜇
values, in all cases besides the one, written in italics, are comfortably compatible with Eq. (22) for
𝑁𝑋 = 2 which imply 𝜆𝜇 ≲ 2 ·10−5. Concluding, the whole inflationary scenario can be successfully
combined with all the allowed regions CMSSM besides region (II) for 𝐾 = 𝐾1. On the other hand,
regions (I) & (IV) are more favored from the point of view of the 𝐺 constraint. Indeed, only
for 𝑚3/2 ≳ 9 TeV the unstable 𝐺 becomes cosmologically safe for the 𝑇rh values, necessitated for
satisfactory nTL – see Eqs. (47) and (6.48b) in Sec. 6.3 below.

6. Non-Thermal Leptogenesis and Neutrino Masses

We below specify how our inflationary scenario makes a transition to the radiation dominated
era (Sec. 6.1) and offers an explanation of the observed BAU (Sec. 6.2) consistently with the 𝐺
constraint and the low energy neutrino data. Our results are summarized in Sec. 6.3.

6.1 Inflaton Mass & Decay

Soon after the end of IHI, the (canonically normalized) inflaton

𝛿𝜙 = ⟨𝐽⟩𝛿𝜙 with 𝛿𝜙 = 𝜙 − 𝑀 and ⟨𝐽⟩ =
√︁
𝑁𝑐𝑅 (37)

12



P
o
S
(
C
O
R
F
U
2
0
2
2
)
1
0
1

Starobinsky-Type 𝐵 − 𝐿 Higgs Inflation Leading Beyond MSSM C. Pallis

with mass given by

𝑚 𝛿𝜙 =

〈
𝑉IHI,𝜙𝜙

〉1/2
=

〈
𝑉IHI,𝜙𝜙/𝐽2

〉1/2
≃ 𝜆𝑚P√︁

𝑐𝑅 (𝑁𝑐𝑅 − 1)
≃ 2.8 · 1013 GeV. (38)

settles into a phase of damped oscillations abound the minimum in Eq. (13) reheating the universe
at a temperature [12]

𝑇rh =

(
72/5𝜋2𝑔∗

)1/4 (
Γ̂𝛿𝜙𝑚P

)1/2
with Γ̂𝛿𝜙 = Γ̂𝛿𝜙→𝑁𝑐

𝑖
𝑁𝑐
𝑖
+ Γ̂𝛿𝜙→𝐻𝑢𝐻𝑑

+ Γ̂𝛿𝜙→𝑋𝑌𝑍 . (39)

Also 𝑔∗ = 228.75 counts the MSSM effective number of relativistic degrees of freedom and we
take into account the following decay widths

Γ̂𝛿𝜙→𝑁𝑐
𝑖
𝑁𝑐
𝑖

=
𝑔2
𝑖𝑁𝑐

16𝜋
𝑚 𝛿𝜙

(
1 −

4𝑀2
𝑖𝑁𝑐

𝑚2
𝛿𝜙

)3/2

with 𝑔𝑖𝑁𝑐 = (𝑁 − 1)𝜆𝑖𝑁
𝑐

⟨𝐽⟩ , (6.40a)

Γ̂𝛿𝜙→𝐻𝑢𝐻𝑑
=

2
8𝜋
𝑔2
𝐻𝑚 𝛿𝜙 with 𝑔𝐻 =

𝜆𝜇√
2
, (6.40b)

Γ̂𝛿𝜙→𝑋𝑌𝑍 = 𝑔2
𝑦

14
512𝜋3

𝑚3
𝛿𝜙

𝑚2
P

with 𝑔𝑦 = 𝑦3

(
𝑁𝑐𝑅 − 1

2𝑐𝑅

)1/2
(6.40c)

and 𝑦3 = ℎ𝑡 ,𝑏,𝜏 (𝑚 𝛿𝜙) ≃ 0.5. Here ℎ𝑡 , ℎ𝑏 and ℎ𝜏 are the Yukawa coupling constants ℎ3𝑈 , ℎ2𝐷

and ℎ3𝐸 in Eq. (2.2a) respectively – we assume that diagonalization has been performed in the
generation space. They arise from the lagrangian terms

L
𝛿𝜙→𝑁𝑐

𝑖
𝑁𝑐
𝑖

= −1
2
𝑒𝐾/2𝑚2

P𝑊RHN,𝑁𝑐
𝑖
𝑁𝑐
𝑖
𝑁𝑐𝑖 𝑁

𝑐
𝑖 + h.c. = 𝑔𝑖𝑁𝑐𝛿𝜙

(
𝑁𝑐𝑖 𝑁

𝑐
𝑖 + h.c.

)
+ · · · ,(6.41a)

L
𝛿𝜙→𝐻𝑢𝐻𝑑

= −𝑒𝐾/𝑚2
P𝐾𝑆𝑆

∗ ��𝑊𝜇,𝑆

��2 = −𝑔𝐻𝑚 𝛿𝜙𝛿𝜙
(
𝐻∗
𝑢𝐻

∗
𝑑 + h.c.

)
+ · · · , (6.41b)

L
𝛿𝜙→𝑋𝑌𝑍 = −𝜆𝑦 (𝛿𝜙/𝑚P) (𝑋𝜓𝑌𝜓𝑍 + 𝑌𝜓𝑋𝜓𝑍 + 𝑍𝜓𝑋𝜓𝑌 ) + h.c., (6.41c)

describing 𝛿𝜙 decay into a pair of 𝑁𝑐
𝑗

with masses 𝑀 𝑗𝑁𝑐 = 𝜆 𝑗𝑁𝑐𝑀 , 𝐻𝑢 and 𝐻𝑑 and three MSSM
(s)-particles 𝑋,𝑌, 𝑍 , respectively.

6.2 Lepton-Number and Gravitino Abundances

For𝑇rh < 𝑀𝑖𝑁𝑐 , the out-of-equilibrium decay of 𝑁𝑐
𝑖

generates a lepton-number asymmetry (per
𝑁𝑐
𝑖

decay), 𝜀𝑖 . The resulting lepton-number asymmetry is partially converted through sphaleron
effects into a yield of the observed BAU

𝑌𝐵 = −0.35·5
2
𝑇rh

𝑚 𝛿𝜙

∑
𝑖

Γ̂𝛿𝜙→𝑁𝑐
𝑖
𝑁𝑐
𝑖

Γ̂𝛿𝜙
𝜀𝑖 with 𝜀𝑖 =

∑︁
𝑗≠𝑖

Im
[
(𝑚†

D𝑚D)2
𝑖 𝑗

]
8𝜋⟨𝐻𝑢⟩2(𝑚†

D𝑚D)𝑖𝑖

(
𝐹S

(
𝑥𝑖 𝑗 , 𝑦𝑖 , 𝑦 𝑗

)
+𝐹V(𝑥𝑖 𝑗)

)
.

(42)
Here ⟨𝐻𝑢⟩ ≃ 174 GeV, for large tan 𝛽, 𝐹S [𝐹V] are the functions entered in the vertex and self-energy
contributions computed as indicated in Ref. [22] and 𝑚D is the Dirac mass matrix of neutrinos, 𝜈𝑖 ,
arising from the forth term in Eq. (2.2a). Employing the seesaw formula we can then obtain the
light-neutrino masses 𝑚𝑖𝜈 in terms of 𝑚𝑖D and 𝑀𝑖𝑁𝑐 given by Eq. (2.2d). As a consequence, nTL
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Parameter Best Fit ±1𝜎
Normal Inverted

Hierarchy

Δ𝑚2
21/10−5eV2 7.5+0.22

−0.20
Δ𝑚2

31/10−3eV2 2.55+0.02
−0.03 2.45+0.02

−0.03
sin2 𝜃12/0.1 3.18 ± 0.16
sin2 𝜃13/0.01 2.2+0.069

−0.062 2.225+0.064
−0.070

sin2 𝜃23/0.1 5.74 ± 0.14 5.78+0.10
−0.17

𝛿/𝜋 1.08+0.13
−0.12 1.58+0.15

−0.16

Table 4: Low energy experimental neutrino data for normal or inverted hierarchical neutrino masses.

can be nicely linked to low energy neutrino data. We take into account the recently updated best-fit
values [23] of that data listed in Table 4. Furthermore, the sum of 𝑚𝑖𝜈’s is bounded from above at
95% c.l. by the data [17, 23]∑

𝑖𝑚𝑖𝜈 ≤ 0.23 eV for NO 𝑚𝑖𝜈’s or
∑
𝑖𝑚𝑖𝜈 ≤ 0.15 eV for IO 𝑚𝑖𝜈’s, (43)

where NO [IO] stands for normal [inverted] ordered neutrino masses 𝑚𝑖𝜈’s.
The validity of Eq. (42) requires that the 𝛿𝜙 decay into a pair of 𝑁𝑐

𝑖
’s is kinematically allowed

for at least one species of the 𝑁𝑐
𝑖
’s and also that there is no erasure of the produced 𝑌𝐿 due to 𝑁𝑐1

mediated inverse decays and Δ𝐿 = 1 scatterings. These prerequisites are ensured if we impose

(a) 𝑚 𝛿𝜙 ≥ 2𝑀1𝑁𝑐 and (b) 𝑀1𝑁𝑐 ≳ 10𝑇rh. (44)

Finally, Eq. (42) has to reproduce the observational result [17]

𝑌𝐵 = (8.697 ± 0.054) · 10−11. (45)

The required 𝑇rh in Eq. (42) must be compatible with constraints on the 𝐺 abundance, 𝑌3/2, at the
onset of nucleosynthesis (BBN), which is estimated to be

𝑌3/2 ≃ 1.9 · 10−22 𝑇rh/GeV, (46)

where we take into account only thermal production of 𝐺, and assume that 𝐺 is much heavier than
the MSSM gauginos. On the other hand, 𝑌3/2 is bounded from above in order to avoid spoiling the
success of the BBN. For the typical case where 𝐺 decays with a tiny hadronic branching ratio, we
have

𝑌3/2 ≲

{
10−13

10−12 for 𝑚3/2 ≃
{

10.6 TeV
13.5 TeV

implying 𝑇rh ≲ 5.3 ·
{

108 GeV ,
109 GeV .

(47)

The bounds above can be somehow relaxed in the case of a stable 𝐺.
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Figure 2: Contours, yielding the central 𝑌𝐵 in Eq. (6.9) consistently with the inflationary requirements, in
the 𝑚1D − 𝑚2D plane. We take 𝐾 = 𝐾2 with 𝑁𝑋 = 2, 𝜆𝜇 = 10−6 and the values of 𝑚𝑖𝜈 , 𝑚1D, 𝑚3D, 𝜑1 and 𝜑2
which correspond to the cases A (solid line), B (dashed line) and C (dot-dashed line).

6.3 Results

Confronting 𝑌𝐵 and 𝑌3/2 – see Eqs. (42) and (46) – with observations we can constrain the
parameters of neutrino sector. This is because 𝑌𝐵 and 𝑌3/2 depend on 𝑚 𝛿𝜙, 𝑇rh, 𝑀𝑖𝑁𝑐 and 𝑚𝑖D and
can interconnect IHI with neutrino physics. We follow the bottom-up approach detailed in Ref. [12],
according to which we find the 𝑀𝑖𝑁𝑐 ’s by using as inputs the 𝑚𝑖D’s, a reference mass of the 𝜈𝑖’s –
𝑚1𝜈 for NO 𝑚𝑖𝜈’s, or 𝑚3𝜈 for IO 𝑚𝑖𝜈’s –, the two Majorana phases 𝜑1 and 𝜑2 of the PMNS matrix,
and the best-fit values for the low energy parameters of neutrino physics shown in Table 4.

The outcome of our computation is presented in Fig. 2, where we depict the allowed values
of 𝑚2D versus 𝑚1D for 𝐾 = 𝐾2 with 𝑁𝑋 = 2, 𝜆𝜇 = 10−6 and the remaining parameters shown in
the Table of Fig. 2. The conventions adopted for the various lines is depicted in the plot label. In
particular, we use solid, dashed and dot-dashed line when the remaining inputs – i.e. 𝑚𝑖𝜈 , 𝑚3D, 𝜑1,
and 𝜑2 – correspond to the cases A, B and C of the Table of Fig. 2 respectively. We consider NO
(cases A and B) and IO (case C) 𝑚𝑖𝜈’s. In all cases, the current limit in Eq. (43) is safely met. The
gauge symmetry considered here does not predict any particular Yukawa unification pattern and so,
the 𝑚𝑖D’s are free parameters. This fact offers us a convenient flexibility for the fulfilment of all the
imposed requirements. Care is also taken so that the perturbativity of 𝜆𝑖𝑁𝑐 holds, i.e., 𝜆2

𝑖𝑁𝑐/4𝜋 ≤ 1.
The inflaton 𝛿𝜙 decays mostly into 𝑁𝑐1 ’s. In all cases Γ̂𝛿𝜙→𝑁𝑐

𝑖
𝑁𝑐
𝑖
< Γ̂𝛿𝜙→𝐻𝑢𝐻𝑑

< Γ̂𝛿𝜙→𝑋𝑌𝑍 and
so the ratios Γ̂𝛿𝜙→𝑁𝑐

𝑖
𝑁𝑐
𝑖
/Γ̂𝛿𝜙 in Eq. (42) introduce a considerable reduction in the derivation of

𝑌𝐵. For the considered cases in Fig. 2 we obtain:

0.01 ≲ 𝑀1𝑁𝑐/103 EeV ≲ 6.4, 2 ≲ 𝑀2𝑁𝑐/103 EeV ≲ 447 and 0.1 ≲ 𝑀2𝑁𝑐/106 EeV ≲ 9.5,
(6.48a)

where 1 EeV = 109 GeV. As regards the other quantities, in all we obtain

1.4 ≲ 𝑌
𝐺
/10−13 ≲ 1.7 with 7.5 ≲ 𝑇rh/108GeV ≲ 9 . (6.48b)

As a bottom line, nTL is a realistic possibility within our setting provided that 𝑚3/2 ∼ 10 TeV as
deduced from Eqs. (47) and (6.48b). These values are in nice agreement with the ones needed for
the solution of the 𝜇 problem within CMSSM in regions (I) and (IV) of Table 3.
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7. Conclusions

We investigated the realization of IHI in the framework of a 𝐵−𝐿 extension of MSSM endowed
with the condition that the GUT scale is determined by the renormalization-group running of the
three gauge coupling constants. Our setup is tied to the super- and Kähler potentials given in Eqs. (1)
and (2.3a) – (2.3b). Our models exhibit the following features:

(i) they predict the correct 𝑛s and low 𝑟 thanks to the induced-gravity and the GUT requirements;

(ii) they ensure the validity of the effective theory up-to 𝑚P;

(iii) they inflate away cosmological defects;

(iv) they offer a nice solution to the 𝜇 problem of MSSM, provided that 𝜆𝜇 is somehow small;

(v) they allow for baryogenesis via nTL compatible with 𝐺 constraints and neutrino data. In
particular, we may have 𝑚3/2 ∼ 10 TeV, with the inflaton decaying mainly to 𝑁𝑐1 and 𝑁𝑐2 –
we obtain 𝑀𝑖𝑁𝑐 in the range (1010 − 1015) GeV.

It remains to introduce a consistent soft SUSY breaking sector – see, e.g., Ref. [24] – to obtain
a self-contained theory – cf. Ref. [25, 26]. Moreover, since our main aim here is the demonstration
of the mechanism of IHI in SUGRA, we opted to utilize the simplest GUT embedding. Extensions
to more structured GUTs are also possible – see e.g. Ref. [9, 13] – with similar inflationary
observables.
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