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Constant current continuous wave Nuclear Magnetic Resonance (NMR) has been an essential
tool for polarized target experiments in Nuclear and High-energy physics. Q-meter based phase-
sensitive detection can provide accurate monitoring of the polarization over the course of a
scattering experiment with limitations due to some operational parameters. In this talk, we present
recent studies of improved signal to noise in NMR-based Spin-1 polarization measurements
as well as reliable measurements outside of the designated range of the Q-meter’s operational
parameters with the use of machine learning (ML). This approach will allow for real time online
polarization monitoring and offline polarization data analysis for improved overall figure of merit

for experiments using solid state polarized targets.
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1. Introduction

Nuclear Magnetic Resonance, or NMR, is the physical phenomenon that occurs when a constant
magnetic field is applied to nuclei at resonance which is perturbed by a weak oscillating magnetic
field, which causes the nuclei to respond by producing an electromagnetic signal with a frequency
characteristic of the magnetic field of the nuclei. This technique allows us to access previously
inaccessible energy states of target material, therefore making the separation between two energy
levels more marked. In the Spinquest experiment at Fermilab, we are applying NMR techniques in
our fixed-target experiment on Deuteron using Deuterated Solid Ammonia as the target material.
Such techniques allow us to study the inner structure of Deuteron.

2. Methodology

The Liverpool Q-meter method is a technique that can be applied to measure Deuteron polar-
ization in NMR. The method consists of using the Liverpool Q-meter, a device that is described
in the literature in heavy detail about its application polarization [1, 2], to study Spin-1 material.
In using this type of Q-meter, we are able to have a continuous wave signal to properly study the
polarization of Deuterium. The Q-meter is used in tandem with a Nuclear Magnetic Resonance data
acquisition system in order to plot the lineshape of Deuterium onto an oscilloscope and record data,
being recorded in terms of frequency w with respect to voltage V with a frequency range between 3
- 300 MHz. The Q-meter couples to the magnetic susceptibility of the target material. The signal
passes from the Q-meter through a cable comprised of specific cable lengths that are called 1/2
lengths, where lambda is the wavelength of the target material at the Larmour frequency. The entire
cable, which is made of copper, is comprised of an integer multiple of the 4/2 constant. Because
the signal is sinusoidal, a precise measurement of the cable is necessary to insure that the lineshape
is properly "tuned", i.e., the lineshape is symmetric and neither leaning to the left nor the right.
In the case of a 5 Tesla magnetic field imposed on the material, each 4/2 cable length should be
358.0 cm. Under ideal conditions and within the Q-meter’s operational parameters, we expect little
relative error. However, because of the conditions set by our experiment, we wanted to develop a
methodology that works outside of the Q-meter’s operational parameters, with minimal systematic
uncertainty in the method. Prior methods of determining Deuterium’s polarization in experiments
came with a relative error of approximately 4-6% [3]. The use of Neural Networks can improve the
accuracy and precision of various measurements. Neural networks are capable of learning complex
relationships between inputs and outputs. By incorporating neural networks into the measurement
process, it is capable of facilitating a higher level of accuracy and precision compared to traditional
methods. However, it is important to consider the quality and reliability of the training data and the
suitability of the neural network architecture for the specific measurement task.

The Deuteron lineshape can be described by an analytical function. For the sake of brevity,
the derivation and exact description will not be covered in this paper. For further information, The
Spin Muon Collaboration delves deeply in the derivation of the function [4].

Training the model was performed with the Tensorflow package. We implemented a model that
uses ’Adam’ as an optimizer. Adam is a well-rounded optimizer that can be used in many different
scenarios. The model was trained on 1 million sample data events, which simulated a Deuteron
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signal on a Q-curve for varying levels of polarization and noise. We also utilized KerasTuner,
a function in the Keras package, to algorithmically optimize the architecture of the model. We
measured the amount of noise in each event via the Signal-To-Noise (SNR) ratio, which gives an
intuition as to how overpowering the noise is relative to the amplitude of the signal. We defined
SNR as:

max(|Noise|)

SNR = ey

~ max(|Signal))

In this case, an SNR value of 1 indicates that the magnitude of the noise is the same magnitude
of the lineshape. A value much greater than one indicates very little noise whereas a value much
less than one indicates a very large amount of noise, all relative to the amplitude of the signal.

3. Preliminary Results

After training the model on 1 million sample data events, as well as tweaking the architecture
of the model, we reached a steady state for the Neural Network’s learning curve indicated by a plot
of its loss function (mean squared error) over epochs.

We present sample plots of the Deuteron lineshape’s actual polarization with that of the Neural
Network’s predicted polarization. Below are some sample plots.
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Figure 1: Simulated lineshapes plotted on a Q-Curve for sample data versus replotted lineshapes with
predicted polarization. The lefthand figure has a relative uncertainty of € = .48% with SNR = 2.4. The
righthand figure has a relative uncertainty of € = .69% with SNR = 1.83.

Preliminary results indicate a model accuracy of 99.97% and precision of 99.94% when trained
for very low levels of polarization and 99.88% accuracy and 99.63% precision when trained for
the entire range of polarization. Compared to results yielded by previous polarization extraction
methods, the Neural Network approach yields better, more accurate, and more precise results.[3]
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Figure 2: Histograms of the percentage difference between actual and predicted polarization. The figure on
the left side is for sample data between 0% - 1% for a model trained within that range and the figure on the
right side is for sample data of 0% - 100%, the entire range of possible polarization values also trained within
that range. The percentage difference is defined as AP = Pyye — Ppredicted- M corresponds to the mean of the
histogram while o corresponds to its standard deviation.

4. Outlook

Further efforts in optimizing an architecture will improve future predictions made by a Neural
Network model, increasing both accuracy and precision. In order to probe polarization around
thermal equilibrium (~ 0.05%), the model must be as accurate and precise as possible. Future
results of these efforts are on their way to be submitted for publication in the journal for Nuclear
Instrumentation and Methods.
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