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1. Introduction

The volume of data collected at the LHC now allows for detailed studies of both Higgs boson
and electroweak boson production in association with two jets (called VBF and VBS respectively).
These processes are of interest mainly because of their electroweak component, which offers a
direct window to the electroweak symmetry breaking and the triboson couplings. However, the
process 𝑝𝑝 → 𝑉 𝑗 𝑗 has contributions at both 𝛼3

𝑤 (VBS) and 𝛼2
𝑠𝛼𝑤 (QCD) respectively, so a precise

prediction of the QCD component is necessary in order to achieve a satisfactory determination of
the VBS component from the measurement of both components combined (with the interference
small[1–3]). However, the signal processes are quark initiated and peak at large invariant mass
between the produced jets. In this region the QCD process receives large perturbative corrections
𝛼𝑠 log(𝑠/𝑝𝑡2) which slow the convergence of the perturbative series.

This observation motivates the systematic study of perturbative corrections of the form
𝛼𝑠 log(𝑠/𝑝𝑡2) to standard model processes within the framework of High Energy Jets (HEJ)[4–
8]. Technically, this formalism achieves the same leading logarithmic accuracy as BFKL[9, 10],
but achieves this while also maintaining gauge invariance (not just asymptotically) and crossing
symmetry for each of the components of the high-energy factorised amplitude. Furthermore, since
the formalism is formulated with a standard numerical phase space integral for each multiplicity
(including emissions generated through the resummation), the results can be matched point by point
in phase to tree-level accuracy for each jet multiplicity and the expansion to next-to-leading order
of the amplitude allows for NLO matching of kinematic distributions[8].

2. Issues at next-to-leading logarithmic accuracy

The calculation of the NLL pieces of the BFKL kernel and impact factors (for an overview
see [11] and references therein) addresses the accuracy of the amplitudes needed in the resummation.
However, as pointed out in reference [12] and further elaborated in references [16–18], these NLL
pieces are still insufficient to ensure overall NLL accuracy of the cross sections. The issue can
be distilled down to the fact that the analytic resummation does not constrain the energy of the
emissions needed to ensure one fixed overall

√
𝑠. At NLL this becomes a problem since a change

in the argument 𝑠 of the leading logarithms induces NLL change etc. This problem is further
illustrated by the fact that the calculation of the real emission corrections to each of the leading
log pieces of the impact factor and the kernel itself involves an integral over the energies of the
two-particle configurations with only the sum of the transverse momentum fixed, and is therefore
itself not constrained to a single

√
𝑠. These issues of phase space integrals relate to the calculation

both of the impact factors and the central emission vertices, which in the analytic approach are
expressed in terms of just transverse momenta (with unconstrained longitudinal momenta).

A final concern raised in reference[12] is the fact that within BFKL the rapidity integrals of the
real emissions are correlated with logarithms of the virtual corrections by identifyingΔ𝑦 ∼ log(𝑠/𝑡),
which is correct only up to terms of order 𝑡/𝑠 so again generates differences of NLL order.
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3. Resolution of these issues within High Energy Jets

The phase-space related issues can be resolved by performing the resummation using a Monte
Carlo phase space generation for each multiplicity. This explicit generation of the phase space
points allows for the correct evaluation of the centre of mass energy. Obviously, however, this
requires the use of just the particle amplitudes, not the BFKL kernel or impact factors, since these
at NLL contain a phase space integral over a range of energies (see e.g. [18]). Not just does that
create problems for the logarithmic accuracy, but it also invalidates any jet clustering to form jet
observables relevant for the LHC.

In order to obtain just the correct logarithmic accuracy one could then proceed just from
the amplitudes derived in ref.[13] with appropriate regularisation and numerical integration. The
approach taken in High Energy Jets is yet more ambitious and requires a new calculation of the
components of the high energy factorisation of the amplitudes to repair a few undesirable properties
of the amplitudes of ref.[13] and thus restore :-

a. Gauge Invariance: The amplitudes of ref.[13] are gauge invariant only in the strict limit
of multi-regge kinematics, but there are sub-leading gauge-dependent terms. These terms
are relevant in sub-leading regions and were studied using e.g. the kinematic constraint of
ref.[14, 15].

It is instead possible to derive a set of factorised amplitudes which are truly gauge invariant
in the sense they fulfil the Ward identity for any choice of momentum for the emitted gluons.
This is achieved by applying only a milder set of approximations in the calculations. For
example the 1 → 2 impact factors are derived from the full 2 → 3 QCD amplitudes by
applying approximations only to the set of momenta which are not part of the relevant impact
factors. This approach is used in HEJ[4].

b. Crossing symmetry: Some of the essential analytic properties of the full scattering ampli-
tudes are spoiled in the traditional approach. This includes e.g. crossing symmetry. This
is easily seen since e.g. the impact factors depend only on the light-cone momentum of
the incoming particles. If crossed to the final state these states therefore cannot regain any
dependence on transverse momentum.

The amplitudes used in HEJ respect full crossing symmetry in the impact factors (i.e. in the
only part of the amplitude which has any states which can be crossed from the initial to final
state).

As a by-product of respecting gauge invariance and crossing symmetry the new high energy
approximation of the full amplitudes receives much smaller matching corrections when matched
order-by-order to the exact full QCD amplitudes. Put different, they are a better approximant in the
regions of phase space relevant for LHC dynamics, even if of course the asymptotic MRK limit
agrees with the amplitudes derived in ref.[13]. The same is true for the full QCD amplitudes, even
if of course they differ from their MRK limit in all off phase space.
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4. First results incorporating NLL pieces

The first results with HEJ beyond pure leading-logarithmic accuracy were obtained in ref.[19,
20]. We will focus here on the results obtained the perturbative corrections in the process 𝑝𝑝 →
𝑊 𝑗 𝑗 . Ref.[20] calculated the high-energy factorised components of the amplitude for all the new
partonic channels appearing at NLL. For 𝑝𝑝 → 𝑊 𝑗 𝑗 this includes “impact factors” (technically
four-vectors or currents in HEJ) for 𝑞 → 𝑞𝑔𝑔∗ and 𝑞 → 𝑞′𝑔(𝑊 →)𝑒�̄�𝑔∗ (𝑔 → 𝑞𝑞𝑔∗ and
𝑔 → 𝑞𝑞′𝑔(𝑊 →)𝑒�̄�𝑔∗ can be found through crossing). 𝑔∗ denotes the off-shell 𝑡-channel gluon
exchange, which will be contracted with another current. There currents are derived with no
approximations applied in the momenta of the constituents of the “impact factor”. This means it
contains all the soft and collinear divergences between the partons involved from the full QCD
amplitude of a process which can be built from these “impact factors”. Since the virtual corrections
are not yet implemented these pieces can be used only in their separate 2-jet phase space and
therefore they start contributing in the 3-jet phase space (since at least one other jet is produced
from the other impact factor in the event). Additionally, central emission vertices were derived for
𝑔∗𝑔∗ → 𝑞𝑞 and 𝑔∗𝑔∗ → 𝑞𝑞′(𝑊 →)𝑒�̄�. Again, the corresponding virtual corrections were not (yet)
included, so these central pieces should be used only in their 2-jet configuration, and therefore they
start contributing from a 4-jet process.

It had previously been observed that while the leading-logarithmic description (matched to full
high-multiplicity Born level in HEJ) would describe well observables aligning themselves with the
kinematics of the high energy limit[20]. However, observables as d𝜎/d𝑝⊥1 were poorly described,
since increasing 𝑝⊥1 is the opposite of the multi-regge-kinematic limit. As illustrated in figure 1,
the inclusion of the NLL components described above is sufficient to repair the description of data
in the regions described poorly with just leading logarithmic accurate results. The description with
the combined NLL pieces and NLO matching (obtained by expanding the resummed calculation to
NLO accuracy) is very good indeed.

Work continues to include all the relevant virtual corrections (which again will differ from the
those of the standard high-energy approaches in order to satisfy e.g. crossing symmetry) such that
a resummation at full NLL accuracy can be performed.
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Figure 1: d𝜎/d𝑝⊥,1 for 𝑝𝑝 → 𝑊 𝑗 𝑗 for fixed NLO (red), high energy LL resummation and matching in
(blue) and the result by including the NLL pieces described (green). The NLL components ensure a good
description also away from the high energy limit. The NLO matching implemented in HEJ2 also reduced the
scale variation (indicated by the size of the band) of the predictions compared to HEJ1, which was matched
only at leading order. Figure taken from ref.[20].
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