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1. The problem, the idea

Data are expected to become more precise in the upcoming high-luminosity run of the Large
Hadron Collider. The drastic reduction in experimental uncertainties expected in the near future
challenges the theory community to provide more accurate theoretical predictions. In addition to
multi-loop amplitudes, the relevant fixed-order calculations rely on the efficient treatment of infrared
singularities. These singularities cancel out when combining virtual corrections, phase-space
integrals of unresolved radiation, and collinear renormalisation of parton distribution functions
(PDFs). While understanding of these singularities is well advanced (see Ref. [3] for a recent
review), developing optimal algorithms for infrared subtraction beyond next-to-leading order (NLO)
remains an open issue. Various methods have been proposed [2, 4–20] (for a recent review see
Ref. [21]), but achieving universality and efficiency at NNLO is still a challenge.

In this proceeding we present a generalisation of the nested soft-collinear subtraction scheme [2]
to parton annihilation into a final state with arbitrary number of gluons and colorless partons. The
scheme was used to provide differential distributions for color singlet production [22] and decay [23],
deep inelastic scattering [24], Higgs production in WBF [25], non-factorisable corrections to 𝑡-
channel single-top production [26], as weel as mixed QCD-electroweak corrections to 𝑊 and
𝑍-boson production [27, 28] and to neutral-current-mediated production of a pair of massless
leptons [29]. Existing applications share common features: given a small number of colored
partons at leading order, the color algebra is trivial and the number of subtractions terms is limited,
providing a significant advantage for the bookkeeping. Moreover, the pole cancellation is performed
analytically, after the explicit evaluation of each subtraction term separately.
This process-driven approach, although successful for simple processes, becomes unfeasible for
higher-multiplicity processes. To solve this problem, we suggest to preserve the full dependence on
color degrees of freedom, and appropriately combine counterterms, prior to their explicit calculation.
This strategy provides important insights into the general organisation of the subtraction procedure
and into the roles of different terms, making the procedure more transparent.

At variance with previous applications, the present study addresses multi-parton processes
in full generality. The key idea relies on organising subtraction terms into recurring building
blocks that combine to form finite quantities. This approach allows for many simplifications among
different counterterms, before their evaluation. As a result, a remarkable improvement in simplicity
and physical transparency in the construction of the subtraction terms is achieved.
In this manuscript we provide a brief overview on some results that will be extensively discuss in
Ref. [1]. In particular, we present a fully general formula for the NLO correction descriptive of
generic 2 → 𝑋 + 𝑛 𝑔 processes. Additionally, we discuss a few points related to the application of
this novel approach to NNLO.

2. Tackling the next-to-leading order correction

In this section we discuss the calculation of QCD corrections to 𝑝𝑝 → 𝑋 + 𝑛 𝑔 production
at NLO, where 𝑛 is the number of final-state gluons and 𝑋 denotes a generic system of colorless
particles. The differential cross section receives contributions from the virtual corrections, from
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the real emission of one additional gluon, and from the collinear renormalisation of PDFs

d𝜎̂NLO = d𝜎̂V + d𝜎̂R + d𝜎̂pdf . (1)

Our goal is to express each of the above contributions in terms of simple structures, with specific
kinematic and color properties. For a generic process, we treat matrix elements as vectors in color
space. A matrix element where partons are assigned definite color indices is then written as a
projection on a particular color-space basis vector. Denoting the lowest-order matrix element for
the partonic process 𝑎𝑏 → 𝑋 +𝑛 𝑔 as |M0(1𝑎, 2𝑏; ... , 𝑁𝑝; 𝑋)⟩𝑐 ≡ |M0⟩𝑐, 𝑁𝑝 = 𝑛+2, we introduce
a function

𝐹LM(1𝑎, 2𝑏; ... , 𝑁𝑝; 𝑋) = |M0⟩𝑐 ⊗ 𝑐⟨M0 | dLipsX O({𝑝𝑖}) , (2)

where ⊗ indicates a tensor product in color space, dLipsX is the Lorentz-invariant phase space
for the colorless system 𝑋 , and O is an infrared-safe observable. Taking the trace in color space
gives the matrix element squared Tr

[
𝐹LM

]
= dLipsX |M|2 O ≡ 𝐹LM. When acting on 𝐹̃LM with a

function 𝐴 of operators in color space, we define the notation

𝐴 · 𝐹LM ≡ Tr
[
𝐴 𝐹LM

]
𝑐
= 𝑐⟨M0 |𝐴|M0⟩𝑐 dLipsX O. (3)

The LO partonic cross section is obtained by integrating 𝐹LM over the phase space of the final-state
partons

d𝜎̂LO =

∫ 𝑁𝑝∏
𝑖=3

[d𝑝𝑖] 𝐹LM(1𝑎, 2𝑏; ... , 𝑁𝑝; 𝑋) =
〈
𝐹LM

〉
, [d𝑝𝑖] =

𝑑3𝑝𝑖

(2𝜋)32𝐸𝑖

. (4)

We then consider the virtual corrections, and examine the one-loop amplitude M1. Infrared
singularities of M1 are given by the Catani’s formula [30]

M1(1𝑎, 2𝑏; ... 𝑁𝑝; 𝑋) = [𝛼𝑠] 𝐼1(𝜖) M0(1𝑎, 2𝑏; ... 𝑁𝑝; 𝑋) +Mfin
1 (1𝑎, 2𝑏; ... 𝑁𝑝; 𝑋) , (5)

with

𝐼1(𝜖) =
1
2

∑︁
(𝑖 𝑗 )

Vsing
𝑖

(𝜖)
𝑻2
𝑖

𝑻𝑖 ·𝑻 𝑗

(
𝜇2

2𝑝𝑖 · 𝑝 𝑗

) 𝜖
𝑒𝑖 𝜋𝜆𝑖 𝑗 𝜖 , Vsing

𝑖
(𝜖) =

𝑻2
𝑖

𝜖2 + 𝛾𝑖
𝜖
. (6)

In Eq. (6) the sum runs over all pairs of distinct partons; definitions of all the relevant quantities
can be found in Ref. [30]. Here we just mention that Mfin

1 is the infrared-finite remainder of
the one-loop amplitude, [𝛼𝑠] = 𝛼𝑠 (𝜇2 )

2𝜋 (𝑒𝜖 𝛾E)/Γ(1 − 𝜖), where 𝛼𝑠 (𝜇2) is the renormalised strong
coupling constant, and 𝑻𝑖 is the color-charge operator of parton 𝑖. Squaring the amplitude we find
the virtual correction to the cross section

d𝜎̂𝑉 =
〈
𝐹LV

〉
= [𝛼𝑠]

〈
𝐼𝑉 (𝜖) · 𝐹LM

〉
+
〈
𝐹fin

LV
〉
, 𝐼𝑉 (𝜖) = 𝐼1(𝜖) + 𝐼

†
1(𝜖) . (7)

Here 𝐹LM represents the LO matrix element squared, and the angular brackets imply the integration
over the fiducial final-state phase space. Normalisation factors accounting for color and spin
averages, as well as symmetry factors, are included in the definition of 𝐹LM. We emphasise that the
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functions describing d𝜎̂𝑉 are naturally affected by color correlations, i.e. by terms proportional to
𝑻𝑖 ·𝑻 𝑗 , as a consequence of the definition of 𝐼1.
We then turn to the real-radiation contribution d𝜎̂R =

〈
𝐹LM(𝑁𝑝 + 1; 𝑋)

〉
. In order to compute it,

we need to extract the singularities that appear when any of the (𝑛 + 1) final state gluons becomes
either soft or collinear to another parton. To isolate potentially unresolved gluon, we introduce the
damping factors Δ(𝑖) , which add up to 1 and ensure that the only unresolved parton in Δ(𝑖)𝐹LM,
with 𝑖 = 1, ..., 𝑁𝑝 + 1, is the parton 𝑖. Given that 𝐹LM is unchanged under any permutation of the
final state gluons, we extract the relevant symmetry factor from 𝐹LM and obtain

1
(𝑛 + 1)!

𝑁𝑝+1∑︁
𝑖=3

〈
Δ(𝑖)𝐹LM(1𝑎, 2𝑏; ... 𝑁𝑝 + 1; 𝑋)

〉
=
〈
Δ(m)𝐹LM(m)

〉
. (8)

In Eq. (8) the gluon m𝑔 can potentially become unresolved, while the remaining 𝑁𝑝 partons are
resolved. We note that in Eq. (8) the symmetry factor contributing to the r.h.s. is understood to
be 1/𝑛! and it is reabsorbed in the definition of

〈
Δ(m)𝐹LM(m)

〉
. We now proceed to subtract the

singularities in Δ(𝑖)𝐹LM, starting with the soft one. We thus write〈
Δ(m)𝐹LM(m)

〉
=
〈
𝑆m𝐹LM(m)

〉
+
〈
𝑆mΔ

(m)𝐹LM(m)
〉
, (9)

where 𝑆m is an operator that extracts the leading soft behaviour of m𝑔 and acts on everything that
is on its right1, while 𝑆m ≡ 𝐼 − 𝑆m. The first term in Eq. (9) corresponds to the soft limit of the
squared matrix element, integrated over the unresolved phase space. It reads [1, 2]〈

𝑆m𝐹LM(m)
〉
= −[𝛼𝑠]

(2𝐸max/𝜇)−2𝜖

𝜖2

∑︁
(𝑖 𝑗 )

〈
𝜂−𝜖
𝑖 𝑗 𝐾𝑖 𝑗

(
𝑻𝑖 ·𝑻 𝑗

)
· 𝐹LM

〉
≡ [𝛼𝑠]

〈
𝐼𝑆 (𝜖) · 𝐹LM

〉
, (10)

where 𝜂𝑖 𝑗 = (1− cos 𝜃𝑖 𝑗)/2, 𝐾𝑖 𝑗 ∝ 𝜂1+𝜖
𝑖 𝑗 2𝐹1(1, 1, 1− 𝜖, 1− 𝜂𝑖 𝑗), and 𝐸max can be chosen such that it

exceeds the maximal energy of any parton in the considered process. We notice that, similar to the
Catani’s operator 𝐼1, also the soft operator 𝐼𝑆 in Eq. (10) contains color-correlated contributions.
We now consider the second term on the right-hand side of Eq. (9). This term is soft-regulated but
it is still affected by collinear singularities. In order to isolate them, we introduce partition functions
𝜔m𝑖 , which satisfy the conditions 𝐶 𝑗m𝜔

m𝑖 = 𝛿𝑖 𝑗 ,
∑

𝑖 𝜔
m𝑖 = 1. Here 𝐶𝑖 𝑗 is the operator that extracts

the leading behaviour of the matrix element under the limit 𝑖 ∥ 𝑗 . We are then able to write

〈
𝑆mΔ

(m)𝐹LM(m)
〉
=

𝑁𝑝∑︁
𝑖=1

〈
𝑆m𝐶𝑖mΔ

(m)𝐹LM(m)
〉
+

𝑁𝑝∑︁
𝑖=1

〈
𝑆m𝐶𝑖m 𝜔

m𝑖Δ(m)𝐹LM(m)
〉
, (11)

with 𝐶𝑖m ≡ 𝐼 −𝐶𝑖m. The last term on the r.h.s. is fully regulated and can be integrated numerically
in four dimensions. The hard-collinear limits in the first term factorise into universal collinear
functions and leading-order 𝐹LM. We first consider the configurations where a final state gluon
[𝑖m]𝑔 splits into two collinear gluons m𝑔 and 𝑖𝑔. Integrating over the phase space of gluon m𝑔, and
summing over the helicities of m𝑔 and 𝑖𝑔, for 𝑖 = 3, ... , 𝑁𝑝 we find〈

𝑆m𝐶𝑖mΔ
(m)𝐹LM(m)

〉
= [𝛼𝑠]

Γ𝑖,𝑔

𝜖

〈
𝐹LM

〉
, (12)

1In Eq. (9) we used 𝑆mΔ(m) = 1.
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where

Γ𝑖,𝑔 =

(
2𝐸𝑖

𝜇

)−2𝜖
Γ2(1 − 𝜖)
Γ(1 − 2𝜖) 𝛾

22
𝑧,𝑔 , 𝛾22

𝑧,𝑔 = −
∫ 1

0
d𝑧 (1 − 𝑆𝑧)

𝑧 𝑃̂𝑔𝑔 (𝑧)
𝑧2𝜖 (1 − 𝑧)2𝜖 + 𝐶𝐴

1 − 𝑒2𝜖 𝐿𝑖

𝜖
.

In the above 𝑧 ≡ 𝐸𝑖/(𝐸m + 𝐸𝑖), 𝑆𝑧 is the soft 𝑧 → 1 limit of the integrand, 𝐿𝑖 = log(𝐸max/𝐸𝑖) and
𝑃̂𝑔𝑔 (𝑧) is the gluon spin-averaged splitting function. When the gluon m𝑔 becomes collinear to the
initial state parton 1𝑎, 𝐹LM becomes dependent on the energy fraction 𝑧 = 1 − 𝐸m/𝐸𝑎. Therefore
the integration over the energy of the gluon m𝑔 results in the convolution of the appropriate splitting
function and the boosted matrix element. Such convolution is identified with the symbol ⊗.
Integrating over the angle between partons m𝑔 and 𝑎, we obtain〈

𝑆m𝐶𝑎mΔ
(m)𝐹LM(m)

〉
= [𝛼𝑠]

Γ𝑎, 𝑓𝑎

𝜖

〈
𝐹LM

〉
+ [𝛼𝑠]

𝜖

〈
Pgen
𝑎𝑎 ⊗ 𝐹LM

〉
. (13)

Here Γ𝑎, 𝑓𝑎 is the generalized initial state anomalous dimension ( 𝑓𝑎 stands for the “flavour of particle
𝑎”), i.e.

Γ𝑎, 𝑓𝑎 =

(
2𝐸𝑎

𝜇

)−2𝜖
Γ2(1 − 𝜖)
Γ(1 − 2𝜖)

(
𝛾 𝑓𝑎 + 𝑻2

𝑓𝑎

1 − 𝑒−2𝜖 𝐿𝑎

𝜖

)
, (14)

where 𝑻2
𝑞 = 𝑻2

𝑞̄ = 𝐶𝐹 , 𝑻2
𝑔 = 𝐶𝐴. In Eq. (13) we also introduced the generalized splitting function

Pgen
𝑎𝑎 . It reads

Pgen
𝑓𝑎 𝑓𝑎

(𝑧) =
(
2𝐸𝑎

𝜇

)−2𝜖
Γ2(1 − 𝜖)
Γ(1 − 2𝜖)

[
−𝑃̂ (0)

𝑓𝑎 𝑓𝑎
(𝑧) + 𝜖 P (𝑘 ) ,fin

𝑓𝑎 𝑓𝑎
(𝑧)

]
, (15)

with 𝑃̂ (0)
𝑓𝑎 𝑓𝑎

(𝑧) being the Altarelli-Parisi splitting function in four dimensions, and P (𝑘 ) ,fin
𝑓𝑎 𝑓𝑎

(𝑧) the
O(𝜖) remainder. Eqs. (12) and (13) can be split according to the kinematic dependence of
𝐹LM into a boosted contribution, which depends on 𝐹LM(𝑧), and an elastic part, proportional to
𝐹LM = 𝐹LM(𝑧 = 1). The latter can be organised into a single-collinear "operator"

𝐼𝐶 (𝜖) =
𝑁𝑝∑︁
𝑖=1

Γ𝑖, 𝑓𝑖

𝜖
, (16)

acting on 𝐹LM. We note that 𝐼𝐶 (𝜖) is singular starting at 1/𝜖 . Before combining all the integrated
subtraction terms, we stress that collinear limits are local in the color space. For this reason, they
do not contain color correlations and they are proportional to Casimir operators only. The sum of
all contributions to the real-emission cross section reads2

d𝜎̂𝑅 = [𝛼𝑠]
〈[
𝐼𝑆 (𝜖) + 𝐼𝐶 (𝜖)

]
· 𝐹LM

〉
+ [𝛼𝑠]

𝜖

[〈
Pgen
𝑎𝑎 ⊗ 𝐹LM

〉
+
〈
𝐹LM ⊗ Pgen

𝑎𝑎

〉]
+

𝑁𝑝∑︁
𝑖=1

〈
𝑆m𝐶𝑖m 𝜔

m𝑖Δ(m)𝐹LM(m)
〉
.

(17)

Combining the virtual loop contribution in Eq. (7) with Eq. (17), and focusing on the elastic piece,
we identify an infrared-finite quantity given by the sum of virtual, soft and single-collinear operators
acting on 𝐹LM 〈

𝐼𝑇 (𝜖) · 𝐹LM
〉
=
〈[
𝐼𝑉 (𝜖) + 𝐼𝑆 (𝜖) + 𝐼𝐶 (𝜖)

]
· 𝐹LM

〉
= O(𝜖0) . (18)

2Notice that the initial state of the process 𝑎𝑏 → 𝑋 + 𝑛 𝑔 can only be 𝑞𝑞 or 𝑔𝑔, which implies Pgen
𝑏𝑏

(𝑧) ≡ Pgen
𝑎𝑎 (𝑧).

We use the convention that
〈
Pgen
𝑎𝑎 (𝑧) ⊗ 𝐹LM

〉
indicates a convolution on the first leg and

〈
𝐹LM ⊗Pgen

𝑎𝑎 (𝑧)
〉

on the second.
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One can check that in the above expression all the singular color-correlated contributions vanish.
This can be proven by noticing that the most divergent terms in 𝐼1 and 𝐼𝑆 do not depend on the
kinematics and therefore we can use color conservation to write∑︁

𝑗≠𝑖

〈
M0

��𝑻𝑖 ·𝑻 𝑗

��M0
〉
= −𝑻2

𝑖 |M0 |2 . (19)

The double poles then disappear due to the overall opposite sign of 𝐼1 with respect to 𝐼𝑆 . The
single pole coming from the virtual correction is now proportional to the logarithms of the Lorentz
invariants 𝑠𝑖 𝑗 = 2𝑝𝑖 · 𝑝 𝑗 and the color structure 𝑻𝑖 ·𝑻 𝑗 . We can decompose these logarithms into the
sum of logarithms of energies and of angular variables. The latter are cancelled by corresponding
terms arising from the soft counterterm. Terms containing logarithms of energies are manifestly
dependent on one color index, say 𝑖, and therefore we can sum over the second index, say 𝑗 , and
use again the relation in Eq. (19). We are then left with single poles multiplied by various constant
and Casimir operators. These poles are exactly cancelled by the series expansion of 𝐼𝐶 , which is
free of color correlations. The remaining poles in Eq. (17) involve convolutions with Pgen

𝑎𝑎 (𝑏𝑏) and
vanish against the collinear renormalisation of the PDFs.

Putting everything together, we are able to quote the finite expression for the NLO corrections
to the LO process 1𝑎 + 2𝑏 → 𝑋 + 𝑛 𝑔,

d𝜎̂NLO = d𝜎̂V + d𝜎̂R + d𝜎̂pdf = [𝛼𝑠]
(〈
𝐼𝑇 (𝜖) · 𝐹LM

〉
+
〈
PNLO
𝑎𝑎 ⊗ 𝐹LM

〉
+
〈
𝐹LM ⊗ PNLO

𝑎𝑎

〉)
+
〈
ONLO Δ(m)𝐹LM(m)

〉
+
〈
𝐹fin

LV
〉
.

(20)

We have defined the subtraction operator for the fully-regulated contributionONLO =
∑

𝑖 𝑆m𝐶𝑖m 𝜔
m𝑖 ,

and introduced PNLO
𝑎𝑎 (𝑧) = 2 log(2𝐸𝑖/𝜇)𝑃̂ (0)

𝑎𝑎 (𝑧) + Pfin
𝑎𝑎 (𝑧).

3. Comments on the NNLO calculation

We now consider the NNLO corrections to 𝑝𝑝 → 𝑋 + 𝑛 𝑔. Here we have contributions
from the double-virtual, the real-virtual and the double-real corrections, as well as from the PDFs
renormalisation, i.e.

d𝜎̂NNLO = d𝜎̂VV + d𝜎̂RV + d𝜎̂RR + d𝜎̂pdf . (21)

A systematic discussion of how to organise the NNLO calculation for a generic process is beyond the
scope of the present manuscript, and we postpone it to a forthcoming paper [1]. In this section we
focus on a specific aspect of the NNLO subtraction procedure, namely the cancellation of double-
color correlated terms. Consider for instance the double-virtual component d𝜎̂VV of Eq. (21).
Using the results of Ref. [30], one observes that d𝜎̂VV depends quadratically on the operator 𝐼1
defined in Eq. (6) and on the corresponding 𝐼†1. Since 𝐼1 ∼ 𝑻𝑖 · 𝑻 𝑗 , this means that d𝜎̂VV must
contain terms of the type (𝑻𝑖 ·𝑻 𝑗) (𝑻𝑘 ·𝑻𝑙), which we define as double-color correlated. Analogous
terms arise in both the double-soft contribution contained in d𝜎̂RR and in the single-soft term
contributing to d𝜎̂RV. Dealing with such double-color correlated terms is in general a non-trivial
but well-defined problem. To solve it, we follow the same strategy as presented in the previous
section on NLO corrections. In particular, we first isolate contributions in d𝜎̂VV that are affected by

6
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double-color correlations, and then we combine them with those contained within d𝜎̂RR and d𝜎̂RV.
The ultimate goal is to assemble all these double-color correlated terms into an expression that can
be expresses as 𝐼2

𝑇
. Once this is achieved, we are able to directly state that such correlations do not

affect the pole content of Eq. (21), avoiding the need to evaluate them explicitly.
With this goal in mind, we begin with the double-virtual correction. For the purposes of our

discussion we restrict our analysis to the part of d𝜎̂VV that contains double-color correlations, i.e.3

𝑌VV =
[𝛼𝑠]

2

〈
M0

��� 𝐼 2
1 +

(
𝐼
†
1
)2 + 2𝐼†1𝐼1

���M0

〉
. (22)

Notice that the combination in Eq. (22) is quite close to
(
𝐼1 + 𝐼

†
1
)2. This observation suggests that,

since we want to rewrite 𝑌VV in terms of 𝐼𝑇 , the latter must appear in second power, as already
anticipated above. As said, we need other contributions of the type 𝐼2

𝑆
, 𝐼𝑆 𝐼𝐶 , 𝐼2

𝐶
, 𝐼𝑆 𝐼

(†)
1 and 𝐼 (†)1 𝐼𝐶

in order to reconstruct 𝐼2
𝑇
. We need to find such structures among those arising from the double-real

and the real-virtual corrections.
To do so, we first consider the double-real contribution d𝜎̂RR. Following the iterative procedure
described in Ref. [2], we extract the double-soft singularities that correspond to singular limits of
unresolved partons m𝑔 and n𝑔. We find

d𝜎̂RR =
〈
𝑆mnΔ

(mn)Θmn𝐹LM(m, n)
〉
+
〈
𝑆mn𝑆n Δ

(mn)Θmn𝐹LM(m, n)
〉

+
〈
𝑆mn𝑆n Δ

(mn)Θmn𝐹LM(m, n)
〉
, (23)

where Θmn = Θ(𝐸m − 𝐸n) is the energy ordering that, together with the partition Δ(mn) (a straight-
forward generalisation of Δ(m) to two unresolved partons), reabsorbs the symmetry factor of the
matrix element. The first term in Eq. (23) is the double-soft unresolved terms. It contains two main
contributions: a single color-correlated and a double color-correlated component. We are interested
in the second one, which is proportional to the factorised product of two eikonal functions and a
LO matrix element. Upon integrating over the unresolved phase space, such term becomes

𝑌
(ss)

RR =
1
2
〈
M0

�� 𝐼 2
𝑆 (𝜖)

��M0
〉
. (24)

The second term in Eq. (23) is the single-soft subtraction term. It is free of double-soft singularities,
but still contains collinear configurations that need to be regularized as well. As expected, after
some manipulations we can extract from it the simple combination of soft and collinear operators

𝑌
(shc)

RR = ⟨M0 | 𝐼𝑆 𝐼𝐶 | M0⟩ . (25)

The last term in Eq. (23) is fully soft-regulated, but still affected by collinear singularities that are
isolated by a phase-space partitioning inspired by the FKS scheme [31]. Among the different terms
that contribute to the soft-regulated piece, we are interested in the double-collinear component,
which is proportional to two collinear limits. After some manipulations we identify the right piece

𝑌
(cc)

RR =
1
2
〈
M0

�� 𝐼2
𝐶

��M0
〉
. (26)

3In order to simplify the notation, in the following we do not show dependencies of operators on 𝜖 , unless these
dependencies become important for the discussion.
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At this point the only missing contributions are of type 𝐼𝑆 𝐼
(†)
1 and 𝐼 (†)1 𝐼𝐶 . To find where they come

from, we have to consider the real-virtual corrections, which can be treated in full analogy to the
NLO case. In this regard, d𝜎̂RV can be written as

d𝜎̂RV ≡
〈
Δ(m)𝐹RV(m)

〉
=
〈
𝑆m𝐹RV(m)

〉
+

𝑁𝑝∑︁
𝑖=1

〈
𝑆m𝐶𝑖mΔ

(m)𝐹RV(m)
〉
+
〈
ONLO Δ(m)𝐹RV(m)

〉
. (27)

The first term on the r.h.s. describes kinematic configurations where parton m𝑔 becomes soft.
Among the different parts contributing to this term, we focus on the component proportional to
the eikonal function multiplied by the one-loop, color-correlated matrix element. Upon integration
over the soft-radiation phase space, we find this term to be equal to

𝑌
(s)

RV = [𝛼𝑠]2
〈
M0

��� 𝐼𝑆 𝐼1 + 𝐼
†
1 𝐼𝑆

���M0

〉
. (28)

Finally, the second term in Eq. (27) is the hard-collinear limit of RV. Again, we select only the
factorised contribution and rewrite it in analogy to the soft component. We find

𝑌
(hc)

RV =

〈
M0

��� (𝐼1 + 𝐼
†
1
)
𝐼𝐶

���M0

〉
. (29)

We are now in the position to collect all the ingredients we were looking for. We combine 𝑌VV,
𝑌
(ss)

RR , 𝑌 (shc)
RR , 𝑌 (cc)

RR , 𝑌 (s)
RV and 𝑌 (hc)

RV to get an object 𝑌 such that4

𝑌 =
[𝛼𝑠]2

2

〈
M0

��� [𝐼𝑉 + 𝐼𝑆 + 𝐼𝐶
]2

���M0

〉
≡ [𝛼𝑠]2

2
〈
M0

�� 𝐼 2
𝑇

��M0
〉
. (30)

This expression is equivalent to the square of the color-correlated term encountered at NLO.
The discussion illustrates the point that it is beneficial to combine certain subtracted term before

attempting to evaluate them. This is particularly important for color correlated contributions, where
iterative structures similar to those encountered at NLO appear. As a further example, let us
consider again 𝑌VV in Eq. (22). Clearly this quantity contains poles starting from O(𝜖−4) and color
correlations from O(𝜖−3). The same holds for 𝑌 (ss)

RR in Eq. (24) and 𝑌 (s)
RV in Eq. (28). In principle,

nothing prevents us from calculating each of these objects individually and then summing them
together (as was done in Ref. [2]). As long as 𝑁𝑝 ≤ 3, there are no conceptual difficulties in
doing so, since the products 𝑻𝑖 ·𝑻 𝑗 can always be written as combinations of Casimir operators. In
contrast, if 𝑁𝑝 ≥ 4, the products 𝑻𝑖 ·𝑻 𝑗 are matrices in color space. Using the approach of Ref. [2],
one would have to deal with cancellations of poles that contain color correlations coming from a
plethora of different terms already at O(𝜖−3). If one also requires the parameter 𝑁𝑝 to be generic,
the problem of color correlations for a generic process would immediately become non-trivial. For
these reasons, the method proposed in this paper changes the philosophy behind the organisation
of infra-red subtraction. All the contributions are written in terms of universal operators as 𝐼𝑉 , 𝐼𝑆 ,
𝐼𝐶 , which are then combined into IR-finite sub-blocks, as 𝐼𝑇 , in a way that it is possible to cancel
double-color correlated poles without having to compute them explicitly first. This, in conclusion,
leads to two important advantages: the problem of color correlations is solved, since everything is
reabsorbed within 𝐼𝑇 , and the final result applies to a general final state.

4The combination of these objects also contains commutators, since 𝐼1, 𝐼†1 and 𝐼𝑆 do not commute with each other.
They give rise to terms proportional to 𝑓𝑎𝑏𝑐 𝑇

𝑎
𝑖
𝑇𝑏
𝑗
𝑇𝑐
𝑘

, which play a different role. We refer this discussions to Ref. [1].
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4. Conclusions

We have discussed the recent progress in applications of the nested soft-collinear subtraction
scheme [2] for generic hadron collider process. We have reduced the singular limits contributing
to the NLO cross section to simple, recurring structures, which combine into compact, 𝜖-finite
expression. This procedure has been discussed in details at NLO for gluon final states, but can be
easily extended to accommodate final state quarks. At NNLO, the structures identified at NLO have
been extracted to prove the cancellation of singular double-color-correlated contributions. This
result points towards an opportunity of systematically combining NNLO subtraction terms into
finite contributions, while minimising the need for explicit calculations. We believe our results to
be a significant step toward the complete generalisation of the subtraction scheme introduced in
Ref. [2] to account for an arbitrary number of final-state particles at NNLO. We will present further
details of this study in an upcoming publication [1].
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