
P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
2
1

3-loop tadpoles with substructure from 12 elliptic
curves

David Broadhurst𝑎,∗
𝑎Open University, Milton Keynes Mk7 6AA, UK

E-mail: David.Broadhurst@open.ac.uk

The generic 2-loop kite integral has 5 internal masses. Its completion by a sixth propagator gives
a 3-loop tadpole whose substructure involves 12 elliptic curves. I show how to compute all such
kites and their tadpoles, with 200 digit precision achieved in seconds, thanks to the procedure
of the arithmetic geometric mean for complete elliptic integrals of the third kind. The number
theory of 3-loop tadpoles poses challenges for packages such as HyperInt by Erik Panzer and
MZIteratedIntegral by Kam Cheong Au. In particular, I obtain three surprising empirical
reductions to classical polylogarithms of totally massive tadpoles. These have been checked at
600-digit precision.
In memoriam, Gabriel Barton (25 February 1934 to 11 October 2022) and Donald Hill Perkins
(15 October 1925 to 30 October 2022), trusted guides and mentors.

16th International Symposium on Radiative Corrections:
Applications of Quantum Field Theory to Phenomenology (RADCOR2023)
28th May - 2nd June, 2023
Crieff, Scotland, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:David.Broadhurst@open.ac.uk
https://pos.sissa.it/


P
o
S
(
R
A
D
C
O
R
2
0
2
3
)
0
2
1

3-loop tadpoles with substructure from 12 elliptic curves David Broadhurst

1. Introduction
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A 3-loop tetrahedral tadpole is formed by closing a kite with a sixth propagator. In the generic
mass case, 6 different kites close to form the same tadpole. Each kite has two elliptic obstructions,
coming from intermediate states with three massive particles. At first sight there appears to be scant
hope that the tadpole might evaluate to multiple polylogarithms. Yet I shall exhibit three totally
massive cases with surprisingly simple empirical reductions to classical polylogarithms.

For the kite integral I extend the methods of [1–3] to the multivariate case, defining the 2-loop
scalar kite in 4-dimensional Minkowski space as

𝐼 (𝑞2) = −𝑞
2

𝜋4

∫
d4𝑙

∫
d4𝑘

5∏
𝑗=1

1
𝑝2
𝑗
− 𝑚2

𝑗
− i𝜖

, (1)

(𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5) = (𝑙, 𝑙 − 𝑞, 𝑙 − 𝑘, 𝑘, 𝑘 − 𝑞), (2)

with a cut 𝑠 ∈ [𝑠L,∞] and a branch point 𝑠L that is the lowest of the thresholds {𝑠1,2, 𝑠4,5, 𝑠2,3,4, 𝑠1,3,5},
where 𝑠 𝑗 ,𝑘 = (𝑚 𝑗 +𝑚𝑘)2 and 𝑠𝑖, 𝑗 ,𝑘 = (𝑚𝑖 +𝑚 𝑗 +𝑚𝑘)2. To compute the kite it suffices to know the
derivative of the discontinuity 𝐼 (𝑠 + i𝜖) − 𝐼 (𝑠 − i𝜖) = 2𝜋i𝜎(𝑠) across the cut, which determines

𝐼 (𝑞2) = −
∫ ∞

𝑠L

d𝑠 𝜎′(𝑠) log
(
1 − 𝑞2

𝑠

)
. (3)

Regularization in 4 − 2𝜖 dimensions of the tetrahedral tadpole formed by joining the external
vertices of the kite with a propagator 1/(𝑞2 − 𝑚2

6) gives

𝑇
5,4,6
1,2,3 =

(
1
3𝜖

+ 1
)

6𝜁3 + 3𝜁4 − 𝐹5,4,6
1,2,3 +𝑂 (𝜖), (4)

𝐹
5,4,6
1,2,3 =

∫ ∞

𝑠L

d𝑠 𝜎′(𝑠)
(
Li2

(
1 −

𝑚2
6
𝑠

)
+ 1

2
log2

(
𝜇2

𝑠

))
, (5)

where 𝜇 is the scale of dimensional regularization. This is more convenient than a 5-dimensional
integral from Schwinger parametrization. With 𝜇 = 𝑚6 = 1, the finite part is given by

𝐹
5,4,6
1,2,3 =

∫ ∞

0
d𝑥1 . . .

∫ ∞

0
d𝑥5

1
𝑈2 log

(
1 +

5∑︁
𝑘=1

𝑥𝑘𝑚
2
𝑘

)
(6)

after setting 𝑥6 = 1 in the Symanzik polynomial of the tetrahedron,

𝑈 = 𝑥3(𝑥1𝑥2 + 𝑥4𝑥5) + 𝑥6(𝑥1𝑥4 + 𝑥2𝑥5) + 𝑥3𝑥6(𝑥1 + 𝑥2 + 𝑥4 + 𝑥5)
+ 𝑥2𝑥4(𝑥1 + 𝑥3 + 𝑥5 + 𝑥6) + 𝑥1𝑥5(𝑥2 + 𝑥3 + 𝑥4 + 𝑥6). (7)

The binary case, with masses equal to zero or unity, was considered in [4–7].
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3-loop tadpoles with substructure from 12 elliptic curves David Broadhurst

2. The derivative of the discontinuity of the kite

In the absence of anomalous thresholds, the non-elliptic contribution from 2-particle cuts is

𝜎′
N(𝑠) = Θ(𝑠 − 𝑠1,2)𝜎′

1,2(𝑠) + Θ(𝑠 − 𝑠4,5)𝜎′
4,5(𝑠) (8)

where Θ is the Heaviside step function. I denote the square root of the Källén function by

Δ(𝑎, 𝑏, 𝑐) =
√︁
𝑎2 + 𝑏2 + 𝑐2 − 2(𝑎𝑏 + 𝑏𝑐 + 𝑐𝑎) (9)

with convenient abbreviations Δ 𝑗 ,𝑘 (𝑠) = Δ(𝑠, 𝑚2
𝑗
, 𝑚2

𝑘
) and Δ𝑖, 𝑗 ,𝑘 = Δ 𝑗 ,𝑘 (𝑚2

𝑖
). Then

𝐷 𝑗 ,𝑘 (𝑠) =
𝑟

𝑠 − (𝑚 𝑗 − 𝑚𝑘)2 log
(
1 + 𝑟
1 − 𝑟

)
, 𝑟 =

(
𝑠 − (𝑚 𝑗 − 𝑚𝑘)2

𝑠 − (𝑚 𝑗 + 𝑚𝑘)2

)1/2

(10)

provides the logarithms in

Δ1,2(𝑠)𝜎′
1,2(𝑠) = <

(
(𝑠 + 𝛼)𝐷4,5(𝑠) + 𝐿4,5 +

∑︁
𝑖=0,+,−

𝐶𝑖

𝐷4,5(𝑠) − 𝐷4,5(𝑠𝑖)
𝑠 − 𝑠𝑖

)
(11)

with constants

𝐶0 = −(𝑚2
1 − 𝑚

2
2) (𝑚

2
4 − 𝑚

2
5), 𝐶± = 𝛼𝑠± + 𝛽, 𝐿4,5 = log

(
𝑚4𝑚5

𝑚2
3

)
, (12)

𝛼 =
(𝑚2

1 − 𝑚
2
4) (𝑚

2
2 − 𝑚

2
5)

𝑚2
3

− 𝑚2
3, 𝛽 =

(𝑚2
1𝑚

2
5 − 𝑚

2
2𝑚

2
4) (𝑚

2
1 − 𝑚

2
2 − 𝑚

2
4 + 𝑚

2
5)

𝑚2
3

, (13)

𝑠0 = 0, 𝑠± =
𝑚2

1 + 𝑚
2
2 − 2𝑚2

3 + 𝑚
2
4 + 𝑚

2
5 − 𝛼

2
±

Δ1,3,4Δ2,3,5

2𝑚2
3

(14)

where 𝑠± locate leading Landau singularities of triangles that form the kite. These may lead to
anomalous thresholds [8], to be considered later.

The elliptic contribution comes from 3-particle intermediate states, giving

𝜎′
E(𝑠) = Θ(𝑠 − 𝑠2,3,4)𝜎′

2,3,4(𝑠) + Θ(𝑠 − 𝑠1,3,5)𝜎′
1,3,5(𝑠). (15)

It contains complete elliptic integrals of the third kind of the form

𝑃(𝑛, 𝑘) = Π(𝑛, 𝑘)
Π(0, 𝑘) , Π(𝑛, 𝑘) =

∫ 𝜋/2

0

𝑑𝜃

(1 − 𝑛 sin2 𝜃)
√︁

1 − 𝑘2 sin2 𝜃
(16)

withΠ(0, 𝑘) = (𝜋/2)/AGM (1,
√

1 − 𝑘2) determined by the arithmetic-geometric mean of Gauss [9].
With 𝑠 = 𝑤2, an integration over the phase space of particles 2, 3 and 4 determines

𝑘2 = 1 − 16𝑚2𝑚3𝑚4𝑤

𝑊
, 𝑊 = (𝑤2

+ − 𝑚2
+) (𝑤2

− − 𝑚2
−) (17)

with 𝑤± = 𝑤 ± 𝑚2 and 𝑚± = 𝑚3 ± 𝑚4. Then I obtain

𝜎′
2,3,4(𝑤

2) = 4𝜋𝑚3𝑚4

AGM (
√

16𝑚2𝑚3𝑚4𝑤,
√
𝑊)

<
( ∑︁
𝑖=+,−

𝐸𝑖

𝑃(𝑛𝑖 , 𝑘) − 𝑃(𝑛1, 𝑘)
𝑡𝑖 − 𝑡1

)
(18)
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with coefficients and arguments given, as compactly as possible, by

𝐸± =
𝑚2

2 − 𝑚
2
3 + 𝑚

2
5

2𝑚2
5

±
(
𝑚2

4 − 𝑚
2
5 − 𝑤

2

2𝑚2
5

)
Δ2,3,5

Δ4,5(𝑤2)
, (19)

𝑡± =
𝛾 ± Δ2,3,5Δ4,5(𝑤2)

2𝑚2
5

, 𝑡1 = 𝑚2
1, 𝑛𝑖 =

(𝑤2
− − 𝑚2

+) (𝑡𝑖 − 𝑚2
−)

(𝑤2
− − 𝑚2

−) (𝑡𝑖 − 𝑚2
+)
, (20)

𝛾 = (𝑚2
2 + 𝑚

2
3 + 𝑚

2
4 − 𝑚

2
5 + 𝑤

2)𝑚2
5 + (𝑚2

2 − 𝑚
2
3) (𝑚

2
4 − 𝑤

2). (21)

An AGM procedure speedily evaluates 𝑃(𝑛, 𝑘) = Π(𝑛, 𝑘)/Π(0, 𝑘) to high precision, as follows.

1. Initialize [𝑎, 𝑏, 𝑝, 𝑞] = [1,
√

1 − 𝑘2,
√

1 − 𝑛, 𝑛/(2 − 2𝑛)]. Set 𝑓 = 1 + 𝑞.

2. Set 𝑚 = 𝑎𝑏 and 𝑟 = 𝑝2 + 𝑚. Replace [𝑎, 𝑏, 𝑝, 𝑞] by the new values in the vector
[(𝑎 + 𝑏)/2,

√
𝑚, 𝑟/(2𝑝), (𝑟 − 2𝑚)𝑞/(2𝑟)]. Add 𝑞 to 𝑓 .

3. If |𝑞/ 𝑓 | is sufficiently small, return 𝑃(𝑛, 𝑘) = 𝑓 , else go to step 2.

This converges very quickly, for 𝑛 ∉ [1,∞]. On the cut with 𝑛 ≥ 1, replace 𝑛 by 𝑛′ = 𝑘2/𝑛 < 1, to
obtain the principal value <𝑃(𝑛, 𝑘) = 1 − 𝑃(𝑛′, 𝑘).

2.1 Criterion for an anomalous contribution

Suppose that 𝑠4,5 ≥ 𝑠1,2. Then

𝜎′(𝑠) = 𝜎′
N(𝑠) + 𝜎

′
E(𝑠) + 𝐶A

Θ(𝑠 − 𝑠4,5)
Δ4,5(𝑠)

<
(
2𝜋iΔ4,5(𝑠−)
𝑠 − 𝑠−

)
(22)

with 𝐶A ≠ 0 if and only if (𝑚1 + 𝑚2) (𝑚2
3 + 𝑚1𝑚2) < 𝑚1𝑚

2
5 + 𝑚2𝑚

2
4 and at least one of Δ1,3,4 and

Δ2,3,5 is imaginary, in which case 𝐶A = ±1 is the sign of =Δ4,5(𝑠−), with 𝑠− given in (14).
This value of𝐶A is required by the elliptic contribution at high energy. With 𝐿𝑘 = 𝑚2

𝑘
log(𝑠/𝑚2

𝑘
),

the large-𝑠 behaviour

𝑠2𝜎′(𝑠) = 2𝐿3 +
∑︁

𝑘=1,2,4,5
(𝐿𝑘 + 𝑚2

𝑘) + 𝑂
(
log(𝑠)
𝑠

)
(23)

invariably holds. The elliptic contribution 𝜎′
E in (22) is oblivious to the anomalous threshold

problem. Its high-energy behaviour determines the value 𝐶A ∈ {0, 1,−1}, ensuring (23).

3. Tadpoles and number theory

The rescaling 𝑚𝑘 → 𝜅 𝑚𝑘 gives 𝐹 → 𝐹 + 12𝜁3 log(𝜅) for the finite part 𝐹. To standardize, I
set 𝜇 = max({𝑚𝑘}) = 1.

I define a tetrahedral tadpole to be perfect if and only if the Källén function vanishes at each
of its 4 vertices, thereby avoiding all resolutions of square roots. Promoting the subscripts and
superscripts of 𝐹 to arguments that denote the 6 masses, I define the two-parameter perfect tadpoles

𝐹 (𝑥, 𝑦) = 𝐹 (1−𝑦,1−𝑥, |𝑥−𝑦 | )
(𝑥,𝑦,1) = 𝐹 (𝑦, 𝑥) = 𝐹 (1 − 𝑥, 1 − 𝑦) (24)
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with symmetries restricting distinct cases to 𝑥 ≥ 𝑦 ≥ 1 − 𝑥 ≥ 0 and hence 𝑥 ∈ [ 1
2 , 1]. In QED, I

identified tetralogarithms in two perfect binary tadpoles, obtaining [6]

𝐹 (1, 0) = 𝐹 (1,1,0)
(1,1,0) = 17𝜁4 + 16𝑈3,1, 𝐹 (1, 1) = 𝐹 (0,0,0)

(1,1,1) = 12𝜁4, (25)

𝑈3,1 =
∑︁

𝑚>𝑛>0

(−1)𝑚+𝑛

𝑚3𝑛
= 1

2 𝜁4 + 1
2 𝜁2 log2(2) − 1

12 log4(2) − 2 Li4( 1
2 ). (26)

Now consider the elliptic route to evaluating 𝐹 ( 1
2 ,

1
2 ). With (𝑚3, 𝑚6) = (1, 0) and 𝑚1 = 𝑚2 =

𝑚4 = 𝑚5 = 1
2 , I obtained

𝐹 ( 1
2 ,

1
2 ) =

1
2

∫ ∞

1
d𝑠

(
𝜎̂′

N(𝑠) + 𝜎̂
′
E(𝑠)

)
log2(𝑠), (27)

𝑤2𝜎̂′
N(𝑤

2) = Θ(𝑤 − 1)
(
2 log

(
𝑟 + 1
𝑟 − 1

)
− 4𝑟 log(2)

)
, 𝑟 =

𝑤
√
𝑤2 − 1

, (28)

𝑤2𝜎̂′
E(𝑤

2) = 4𝜋(1 − 𝑃(𝑛, 𝑘))Θ(𝑤 − 2)
AGM(2

√
𝑤, (𝑤 − 1)

√
𝑤2 + 2𝑤)

, 𝑛 =
𝑤2 − 2𝑤
(𝑤 − 1)2 ,

𝑘2

𝑛
=

(𝑤 + 1)2

𝑤2 + 2𝑤
(29)

and readily discovered a new reduction of a perfect tadpole to tetralogarithms

𝐹 ( 1
2 ,

1
2 ) = 30𝜁3 log(2) − 16𝜁4 − 32𝑈3,1. (30)

3.1 Relations between tadpoles

In addition to the two-parameter family 𝐹 (𝑥, 𝑦), there is a one-parameter family 𝐺 (𝑥) =

𝐹
(𝑥,1−𝑥,1)
(𝑥,1−𝑥,1) of perfect tadpoles, with 𝑥 ∈ [0, 1

2 ] and 𝐺 (0) = 17𝜁4 + 16𝑈3,1.
I used the efficient AGM of Gauss to obtain 200 digits of

𝐺 ( 1
2 ) = −

∫ ∞

1
d𝑠

(
𝜎̂′

N(𝑠) + 𝜎̂
′
E(𝑠)

)
Li2(1 − 𝑠) (31)

to which all routes are elliptic. This revealed the intriguing empirical relation

2𝐹 ( 1
2 ,

1
2 ) + 2𝐹 (1, 1

2 ) + 𝐺 ( 1
2 ) = 42𝜁4 + 24𝜁3 log(2). (32)

A non-elliptic route to 𝐹 (1, 1
2 ) led to multiple polylogarithms in an alphabet of forms, d𝑥/(𝑥 − 𝑎𝑖),

with 𝑎𝑖 ∈ {0, 1, −1, −2, − 1
2 }. With help from Steven Charlton, I found the surprising evaluation

𝐹
( 1

2 ,
1
2 ,1)

( 1
2 ,

1
2 ,1)

= 𝐺 ( 1
2 ) = 6

(
2𝜁4 − 3Li4( 1

4 )
)
+ 8

(
2𝜁3 − 3Li3( 1

4 )
)
𝐿 − 12 Li2( 1

4 )𝐿
2 − 4𝐿4 (33)

with 𝐿 = log(2) and classical polylogs giving 10000 digits in less than a second. Relation (32)
evaluates an integral of a trilog against complete elliptic integrals of the first and second kinds:

4
∫ 1

0
d𝑦

(
1
𝑦
− 1

)
𝑇 (𝑦)𝑍 (𝑦) = 𝐺 ( 1

2 ) + 16 𝜁4 + 32𝑈3,1 − 30 𝜁3 log(2) , (34)

𝑇 (𝑦) = Li3(𝑢) − 1
2 Li2(𝑢) log(𝑢) , 𝑢 =

𝑦

(1 + 𝑦)2 , (35)

𝑍 (𝑦) = 𝑦(1 + 𝑦)𝐾 (𝑘) + 𝐸 (𝑘)
(1 + 𝑦 + 𝑦2)

√︁
1 + 𝑦

, 𝑘2 = 1 − 𝑦3 , (36)

𝐾 (𝑘) =
∫ 𝜋/2

0
(1 − 𝑘2 sin2 𝜃)−1/2d𝜃, 𝐸 (𝑘) =

∫ 𝜋/2

0
(1 − 𝑘2 sin2 𝜃)1/2d𝜃 . (37)
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I remark that the elliptically obstructed massless 10-point double-box integral of [10, 11] involves
the integral of trilogarithms against the reciprocal of the square root of a quartic.

Binary tadpoles, with 𝑚𝑘 ∈ {0, 1}, evaluate to multiple polylogarithms in an alphabet contain-
ing sixth roots of unity, with 𝜆 = (1 +

√
−3)/2 appearing if three massive edges meet at a vertex,

where Δ𝑖, 𝑗 ,𝑘 =
√
−3. For example, with 5 unit edges

𝐹
(1,1,1)
(1,1,0) =

109
6

(𝜋
3

)4
+ 16<

(
Li22(𝜆)

6
+

∑︁
𝑚>𝑛>0

𝜆3𝑚+2𝑛

𝑚3𝑛

)
. (38)

There are linear relations between binary tadpoles [6],

3𝐹 (1,1,1)
(0,0,0) = 𝐹

(0,0,0)
(1,1,1) + 2𝐹 (1,0,0)

(1,1,0) , (39)

3𝐹 (0,0,0)
(1,1,0) = 𝐹

(0,0,0)
(1,0,0) + 2𝐹 (0,0,0)

(1,1,1) , (40)

𝐹
(1,1,1)
(1,1,1) + 𝐹

(1,0,0)
(1,0,0) = 𝐹

(1,1,0)
(1,1,0) + 𝐹

(1,1,1)
(0,0,0) , (41)

the last of which surprisingly reduces a totally massive imperfect case to polylogs, with

𝐹
(1,1,1)
(1,1,1) = 16𝜁4 + 8𝑈3,1 + 4Cl22(𝜋/3) (42)

containing the square of the Clausen value Cl2(𝜋/3) = =Li2(𝜆).

3.2 Three more reductions of tadpoles to polylogs

In further evidence of the simplicity of perfect tadpoles, I reduced 𝐹 (1, 2
3 ), 𝐹 (

2
3 ,

2
3 ) and 𝐹 ( 3

4 ,
3
4 )

to weight-4 products of {log(2), log(3), 𝜁2, Li2( 1
4 ), 𝜁3, Li3( 1

9 ), Li3( 1
4 )}, together with Li4(𝑥) for

𝑥 ∈ { 1
9 ,

1
4 ,

1
3 ,

1
2 } and the depth-2 multiple polylogarithm Li2,2( 1

4 , 1) =
∑

𝑚>𝑛>0(2𝑚𝑚𝑛)−2.

3.3 Stringent tests for kites and tadpoles

1. Elliptic terms do not depend on the order of phase-space integrations [12].

2. The derivative of the discontinuity of a kite satisfies the sum rule∫ ∞

𝑠L

d𝑠 𝜎′(𝑠) log
(
𝑠

𝑠L

)
= 6𝜁3. (43)

3. The high-energy behaviour (23) of 𝜎′(𝑠) holds irrespective of anomalous thresholds.

4. Benchmarks for kites, given by Stefan Bauberger and Manfred Böhm [13] to 6 decimal digits
and by Stephen Martin [14], to 8 decimal digits, are confirmed and then extended to 100
digits in less than a second.

5. The same tadpole is obtained by integrating over 6 distinct kites.

6. Binary tadpoles with 𝑚𝑘 ∈ {0, 1} agree with my previous reductions to poloylogs of sixths
roots of unity.
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3.4 Number theory

So far, one might guess that a tadpole with rational masses evaluates to multiple tetralogarithms
in an alphabet whose number field is no larger than the compositum 𝑄(Δ1,3,4,Δ2,3,5,Δ1,2,6,Δ4,5,6)
of the quadratic number fields associated by Gunnar Källén to the vertices of the tetrahedron. Yet
that is not the case. The imperfect binary tadpole 𝐹 (1,0,0)

(1,1,0) involves Cl22(𝜋/3), but the Källén field is
rational. Faced with this rather limited, yet potent, evidence, I arrive at three suggestions, each too
weak to be dignified as a well-tested conjecture.

1. Tetrahedral tadpoles with rational masses reduce to multiple tetralogarithms whose alphabet
lies in an algebraic number field.

2. If the tadpole is perfect, the alphabet is rational.

3. If the tadpole is imperfect, the alphabetic field may include the Källén field.

3.5 Experimentum crucis

Most remarkably, I found an empirical relation between the totally massive imperfect tadpole
𝐹

(1,1,1)
( 1

2 ,
1
2 ,

1
2 )

with Källén field 𝑄(
√
−3) and the perfect tadpole 𝐺 ( 1

2 ) in (33), namely

𝐹
(1,1,1)
( 1

2 ,
1
2 ,

1
2 )

= 3𝜁3 log(2) − 4𝑈3,1 + 10𝜁4 + 10Cl22(𝜋/3) − 1
2𝐺 ( 1

2 ). (44)

It took less than a minute to validate (44) at 600-digit precision. It implies that

4
∫ ∞

2

d𝑤
𝑤

(
Li2

(
1 − 1

𝑤2

)
− 𝜁2

)
𝑌 (𝑤) = 𝜁4 − 4𝑈3,1 + 7𝜁3 log(2), (45)

𝑌 (𝑤) = Π(0, 𝑘) − Π(𝑛, 𝑘) − 6Π(𝑛̂, 𝑘)
(𝑤 − 1)

√
𝑤2 + 2𝑤

, (46)

𝑘2 = 1 − 4
(𝑤 − 1)2(𝑤 + 2)

, 𝑛 = 1 − 1
(𝑤 − 1)2 , 𝑛̂ = 1 − 2

𝑤(𝑤 − 1) . (47)

4. Comments and summary

1. Elliptic substructure of 2-loop kites and 3-loop tadpoles is not a problem. The time taken to
evaluate a complete elliptic integral, of whatever kind, is commensurate with the time for a
logarithm and less than the time for a dilogarithm. Thanks to Gauss, elliptic integrals should
be embraced, not feared.

2. Anomalous terms are not problematic. They submit to Gauss, at high energy.

3. The number theory of tadpoles is subtle. As found in (33,42,44), totally massive tadpoles
may be polylogarithmic. Yet every route to their evaluation has an elliptic obstruction.
Notwithstanding earnest efforts by Yajun Zhou and myself, proofs of these three surprising
reductions currently elude us.

4. With at least one massless edge, non-elliptic routes permit proofs, ex post facto, of reductions
discovered empirically, using Pari/GP. For the proofs, we relied on procedures implemented
in Maple by Erik Panzer [15] and in Mathematica by Kam Cheong Au [16].
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