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1. Introduction

The Drell-Yan (DY) production of a pair of leptons plays a crucial role in the precision deter-
minations of the parton density functions (PDFs) and of the electroweak (EW) parameters of the
Standard Model (SM). Precise experimental measurements and equally precise theoretical predic-
tions, both are necessary for these precision studies. The level of precision for the corresponding
observables reached till date, is only possible due to the high-quality experimental data collected
at the Fermilab Tevatron by the CDF and D0 experiments, and at the CERN LHC by the ATLAS,
CMS, and LHCb experiments, and precise theoretical predictions. The future hadron colliders
will achieve precision higher than ever, and hence it is very crucial to reach a similar accuracy for
theoretical estimates. The experimental data can be compared to the theoretical estimates only when
both are equally precise. This comparison can indicate possible deviations from the SM physics,
thus providing signals for beyond the SM physics.

The precision for theoretical predictions can be increased by including corrections from the
higher orders in the perturbative expansion. For DY production, the perturbative Quantum Chromo-
dynamics (QCD) corrections have been computed up to third order in the strong coupling constant
(𝛼𝑠) in refs. [1–6]. The next-to-next-to-leading-order (NNLO) QCD differential distributions
have been obtained in refs. [7–11]. The first estimates of the next-to-next-to-next-to-leading-order
(N3LO) QCD fiducial cross sections for the neutral current (NC) DY have been obtained in ref. [12].
The threshold behaviour at the third and higher order in 𝛼𝑠 has been studied in refs. [13–21]. The
NLO EW corrections in the electromagnetic coupling constant (𝛼) have been computed in refs. [22–
31]. The third order QCD corrections provide per mill effects, implying necessary inclusion of the
mixed QCD-EW corrections, as the later one is also expected to be of same magnitude as the former
one. Additionally, the QCD corrections only control the uncertainties arising from the unphysical
scales, while the large effects from the Sudakov logarithms are controlled only by considering the
EW corrections. Hence, to obtain a robust estimate, it is necessary to include the mixed QCD-EW
corrections.

In several works [32–40], attempts were taken either to compute the necessary ingredients or to
obtain a rough estimate through various approximations. In refs. [41–45], an analytic computation
was performed to obtain the complete NNLO QCD-EW corrections to 𝑍 boson inclusive production.
The differential cross-sections for the on-shell 𝑍 and 𝑊 production at this perturbative order have
been computed in refs. [46] and [47], respectively. The first step was taken in refs. [48, 49]
to obtain the O(𝛼𝑠𝛼) corrections to the full DY production considering the pole approximation
[50]. Also a partial result has been computed in ref. [51] by obtaining the O(𝑛𝐹𝛼𝑠𝛼) terms.
Towards the computation of the complete NNLO QCD-EW corrections to the NC DY process, the
contributing master integrals (MIs) were obtained in several publications [52–55]. In ref. [56], the
two-loop helicity amplitudes for NC DY was obtained for massless leptons. In ref. [57], the two-
loop virtual contributions were obtained considering massive leptons, with the small mass limit.
Finally the complete NNLO QCD-EW corrections to the NC DY process has been obtained in
refs. [58, 59], including the exact two-loop virtual contributions. The mixed QCD-EW corrections
to the charged-current (CC) DY process has been computed in ref. [60], with the reweighted two-
loop virtual corrections in the pole approximation and the rest in exact form. To obtain the complete
result for the CC DY process, the only missing part is the two-loop virtual contribution.
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In this proceeding, we present the computational procedure we have followed to obtain the
mixed QCD-EW two-loop virtual corrections for the CC DY production. The presence of one
additional mass compare to the NC DY process, makes the computation of the two-loop amplitudes
extremely challenging, specially the two-loop Feynman integrals. Our approach to evaluate the
relevant two-loop Feynman integrals using semi-analytic method, allows us to obtain the renormal-
ized two-loop amplitudes. We perform the subtraction of the universal infrared singularities mostly
analytically and evaluate the hard function numerically as a grid.

2. Theoretical framework

We consider the CC DY process which is given, at the partonic level, by

𝑢(𝑝1) + 𝑑 (𝑝2) → 𝜈𝑙 (𝑝3) + 𝑙+(𝑝4) , (1)

with the on-shell conditions of the external particles given by

𝑝2
1 = 𝑝2

2 = 𝑝2
3 = 0; 𝑝2

4 = 𝑚2
𝑙 . (2)

𝑚𝑙 is the lepton mass. The Mandelstam variables for this process are defined as follows:

𝑠 = (𝑝1 + 𝑝2)2, 𝑡 = (𝑝1 − 𝑝3)2, 𝑢 = (𝑝2 − 𝑝3)2 with 𝑠 + 𝑡 + 𝑢 = 𝑚2
𝑙 . (3)

We also define here 𝜇𝑊 and 𝜇𝑍 , the complex masses of the𝑊 and 𝑍 bosons respectively, as follows:

𝜇2
𝑉 = 𝑀2

𝑉 − 𝑖𝑀𝑉 Γ𝑉 . (4)

The mass and decay width 𝑀𝑉 , Γ𝑉 are real and the pole quantities. The bare amplitude (denoted by
the hat) can be expanded into a double perturbative series in the two coupling constants as follows

|M̂〉 =
∞∑︁

𝑚,𝑛=0

(
𝛼̂𝑠

4𝜋

)𝑚 (
𝛼̂

4𝜋

)𝑛
|M̂ (𝑚,𝑛)〉 . (5)

The two-loop amplitudes are not physical quantities, and hence they contain divergences of
ultraviolet (UV) and infrared (IR) origin. We use the method of the dimensional regularization
with arbitrary space-time dimension 𝑑 = 4 − 2𝜖 to regulate the divergences. However, the EW
interactions are chiral, and hence we need to define 𝛾5, an inherently four-dimensional object, in
arbitrary 𝑑-dimensions. In ref. [56], it has been explicitly checked for the NC DY process at O(𝛼𝛼𝑠)
that the prescriptions to define 𝛾5 by ’t Hooft and Veltman [61], and, Breitenlohner and Maison
[62–64] and Kreimer et al. [65, 66], both yield different results for the scattering amplitudes, but
same result for the IR-subtracted finite remainder. We follow the prescription by Kreimer et al,
keeping the anti-commutation relation together with the relations

𝛾2
5 = 1 , 𝛾

†
5 = 𝛾5 (6)

and we use a fixed point for the Dirac traces. For the remaining single 𝛾5, we perform the replacement

𝛾5 = 𝑖
1
4!
𝜀𝜈1𝜈2𝜈3𝜈4𝛾

𝜈1𝛾𝜈2𝛾𝜈3𝛾𝜈4 , (7)
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where, 𝜀𝜇𝜈𝜌𝜎 is the Levi-Civita tensor in 𝑑 dimensions.
The two-loop virtual amplitudes contain both UV and IR divergences. We perform appropriate

UV renormalization of the fields and parameters to remove the UV divergences. The renormalization
procedure is similar to the one in the NC DY production, details of which have been presented in
ref. [51]. To perform the renormalization, we need the on-shell electric charge counterterm at
O(𝛼2) and O(𝛼𝛼𝑠) [67], the mass counterterms [51] in the complex mass scheme [68], the finite
correctionΔ𝑟 [69–71], appearing in the relation between the Fermi constant𝐺𝜇 and the fine structure
constant 𝛼, and the two-loop O(𝛼𝛼𝑠) self-energy expressions of the gauge boson propagators and
the counterterms [51, 70, 71].

The UV renormalized amplitudes contains only IR divergences. However, the IR structure of
multiloop scattering amplitudes is universal and can be predicted by studying QCD factorization.
The IR structure was well studied up to two-loop level [72–75] for a massless gauge theory. In case
of a mixed gauge group, it was first presented in refs. [76, 77], particularly for mixed QCD⊗QED
corrections to NC DY production with massless leptons. In case of the amplitudes containing
massive particles in the final states, the IR structure changes substantially. Such studies have been
performed rigorously in refs. [78–83]. For the specific process of top quark pair production in
the hadron colliders, a detailed study has been performed in refs. [84–87]. This result has been
abelianized [88] to obtain the IR structure for the mixed QCD-EW corrections to NC DY and CC
DY production considering massive leptons. The IR structure of the scattering amplitudes has a
perturbative structure and the subtraction operator I (𝑚,𝑛) acts as the basic building block at each
order of 𝛼𝑠. I (𝑚,𝑛)s are process-independent, but can differ from each other by a finite constant for
different subtraction schemes. We use here the I (𝑚,𝑛)s which have been defined in the framework
of the 𝑞𝑇 -subtraction formalism [89]. The one-loop IR subtraction functions for CC DY at the
renormalization scale 𝜇2

𝑅
= 𝑠, are given by

I (1,0) = 𝐶𝐹

(
2
𝜖2 + 1

𝜖
(3 + 2𝑖𝜋) − 𝜁2

)
, (8)

I (0,1) =
𝑄2

𝑢 +𝑄2
𝑑

2

(
2
𝜖2 + 1

𝜖
(3 + 2𝑖𝜋) − 𝜁2

)
− 4
𝜖
Γ
(0,1)
𝑙

, (9)

where

Γ
(0,1)
𝑙

= −𝑄𝑢𝑄𝑙

2
log

(
− 𝑢

𝑠

)
+ 𝑄𝑑𝑄𝑙

2
log

(
− 𝑡

𝑠

)
+
𝑄2

𝑙

4

(
− 1 + 𝑖𝜋 + log

(
𝑠

𝑚2
𝑙

) )
. (10)

𝑄𝑙 and 𝑄𝑢 are the electric charges of the lepton and of the initial-state quark, and the Casimir
of the fundamental representation of SU(N), 𝐶𝐹 , is given by 𝐶𝐹 = 𝑁 2−1

2𝑁 . Using the one-loop
subtraction functions, we obtain the finite contributions from the one-loop QCD and EW amplitudes,
respectively, as follows:

|M (1,0) , 𝑓 𝑖𝑛〉 = |M (1,0)〉 + I (1,0) |M (0)〉 , (11)

|M (0,1) , 𝑓 𝑖𝑛〉 = |M (0,1)〉 + I (0,1) |M (0)〉 . (12)
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The mixed two-loop subtraction operator at the renormalization scale 𝜇2
𝑅
= 𝑠 is given by

I (1,1) = −𝐶𝐹

[
𝑄2

𝑢 +𝑄2
𝑑

2

(
4
𝜖4 + 1

𝜖3 (12 + 8𝑖𝜋) + 1
𝜖2 (9 − 28𝜁2 + 12𝑖𝜋) + 1

𝜖

(
− 3

2
+ 6𝜁2

− 24𝜁3 − 4𝑖𝜋𝜁2

))
+

(
− 2
𝜖2 − 1

𝜖
(3 + 2𝑖𝜋) + 𝜁2

)
4
𝜖
Γ
(0,1)
𝑙

]
. (13)

Using eqs. (11-13), we obtain the subtracted and finite two-loop amplitude

|M (1,1) , 𝑓 𝑖𝑛〉 = |M (1,1)〉 + I (1,1) |M (0)〉 + Ĩ (0,1) |M (1,0) , 𝑓 𝑖𝑛〉 + Ĩ (1,0) |M (0,1) , 𝑓 𝑖𝑛〉 . (14)

Ĩ (𝑖, 𝑗) is obtained by dropping the term proportional to 𝜁2 inI (𝑖, 𝑗) . This conventional choice defines
the finite part of our subtraction term.

2.1 Details of computational procedure

In this section, we provide a summary of the computational procedure to obtain the two-loop
matrix elements. These computations are technically challenging and very much involved. Hence,
we employ two independent set of programs to compute the matrix elements for cross-checking.
In one set, we use QGRAF [90] to generate the Feynman diagrams, followed by a set of in-house
FORM [91] routines, to perform the Lorentz and Dirac algebra. The appearing scalar integrals
have been reduced to the MIs by means of integration-by-parts (IBP) identities [92, 93], through
LiteRed [94, 95] and Reduze2 [96, 97]. In the second set of programs, we have used ABISS, based
on FeynArts [98] to generate the Feynman diagrams and perform the algebras. The IBP reduction
has then been performed using Kira [99].

As the IBP reduction and subsequently the computation of the MIs become extremely chal-
lenging for multiple mass scales, we consider massless lepton to compute the amplitudes. Later, we
use the universality of QCD amplitudes and massification to obtain the results in the small lepton
mass limit i.e. 𝑚ℓ is negligible compared to 𝜇𝑊 , 𝜇𝑍 and to the energy scales of the process. In
this way, we get the collinear contributions from the lepton mass which appear as log(𝑚2

ℓ
/𝑠). The

dropped terms are proportional to O(𝑚2
𝑙
) and negligible compared to the total contributions.

Following the IBP reduction, the unrenormalized two-loop amplitudes can be expressed as

〈M̂ (0) |M̂ (1,1)〉 =
∑︁
𝑘

𝑐𝑘 (𝑠, 𝑡, {𝑚𝑖}, 𝜀)𝐼𝑘 (𝑠, 𝑡, {𝑚𝑖}, 𝜀) (15)

where both the rational coefficients 𝑐𝑘 and the MIs 𝐼𝑘 depend on 𝜀, the kinematical variables 𝑠, 𝑡
and the masses {𝑚𝑖} of the gauge bosons and fermions. The MIs can be broadly grouped depending
on the presence of the masses. The massless two-loop form factor type MIs were computed in
ref. [100]. The MIs with only one mass scale (𝑚𝑊 ) are available in refs. [101, 102] for the form
factor type, and in refs. [52–54] for the box type. However, the MIs with two mass scales (𝑚𝑊 and
𝑚𝑍 ) are not known. We compute them using our Mathematica based program SeaSyde [103]
semi-analytically as described in the next section. Additionally to observe the analytic cancellation
of the IR poles with the universal IR structure, we also compute the necessary poles of these
two-mass MIs analytically.
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2.2 Computation of the master integrals

The massless and one-mass MIs has been computed by using the method of differential equa-
tions [104–110], obtaining the solution in terms of generalised harmonic polylogarithms (GHPLs),
also known as Goncharov Polylogarithms (GPLs) [111–113]. However, the computation of two-
different-mass MIs using the method of differential equations are extremely challenging. Hence
we adopt the following semi-analytical approach. We obtain the MIs by solving the corresponding
differential equations using series expansion method (See for instance [114–120]). To do so, we
consider the complete system of differential equations for these two-different-mass MIs. We im-
plemented the method, as presented in ref. [121] and the Mathematica code DiffExp [122], in an
independent public Mathematica package SeaSyde [103], generalising it in order to perform the
analytic continuation on the complex plane. First, we make an ansatz of the homogeneous solution
of the corresponding differential equation as a Laurent series expansion around the initial boundary
condition. The unknown coefficients of the series expansion can be determined by plugging it into
the homogeneous system and by solving the set of algebraic equations. After obtaining the homo-
geneous solution, we use the method of variation of constant to compute the particular solution.
The solutions can be computed to arbitrary precision, only limited by the precision of the initial
conditions. We have extensively used SeaSyde for the known results of NC DY to cross-check.
Also, we have performed a thorough check comparing DiffExp and SeaSyde for the same system
of differential equations, and finding excellent agreement. We also have checked our results with
AMFlow [123] output for few chosen kinematical points. Additionally, we have computed the
two-different-mass MIs up to the 1

𝜖 2 pole analytically, by solving the differential equations. This
allows us to obtain complete analytic results up to the 1

𝜖 2 pole, and hence analytic cancellation with
the universal IR contributions.

2.3 Massification

Additional scales in Feynman integrals make both the IBP reduction and computation of the
MIs, challenging. Hence, we have performed both these operations considering massless lepton.
Once, we obtain the renormalized two-loop amplitudes for massless lepton, we use the massification
procedure [78, 82] i.e. we multiply the ratio of the massive and massless jet function for each lepton
to obtain the results for massive leptons, but in the small mass limit. Through massification,
the massive (|M𝑚〉) and massless (|M0〉) amplitudes with 𝑘 being the number of leptons to be
massified, are related by

|M𝑚〉 = (𝑍 (𝑚 | 0)
𝑞 ) 𝑘

2 |M0〉 . (16)

3. Results and conclusions

In this proceeding, we present the computational details of the mixed QCD-EW two-loop
virtual corrections for the CC DY production. Compare to the NC DY production, the presence
of one additional mass makes the computation of the two-loop amplitudes extremely challenging,
specially the two-loop Feynman integrals. We address the issue using semi-analytical approach.
We compute the necessary MIs using our Mathematica package SeaSyde with great precision and
successfully perform the subtraction of IR poles at double-precision. Additionally, we compute the

6
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required MIs analytically and obtain analytical results up to the 1
𝜖 2 pole, which allow us to perform

the subtraction analytically to that order in 𝜖 . We obtain the hard function after performing the IR
subtraction and numerically evaluate it in the form of a grid. The results will be presented in a
future publication.
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