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1. Introduction

One of the theoretical approaches to studying the inclusive decays of hadrons including a
1-quark is through the Heavy Quark Expansion (HQE), which expresses the hadron lifetime as
a simultaneous UB and 1/<1 expansion via an Operator Product Expansion (OPE) [1, 2]. The
inclusive decay rate Γ of a 1-hadron �1 is given by [1]
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where the Fermi constant �� and the CKM-matrix element +21 appear after integrating out the
,-boson. The factors of the mass of the hadron "�1

in the denominator reflect the relativistic
normalisation of states. The decay rate is split into perturbatively calculable [3, 4] coefficients 2=,
and non-perturbative QCD matrix elements of operators of increasing dimension, suppressed by
inverse powers of the 1-quark mass <1. The Δ� = 0, dimension 6 QCD operators are written
in terms of Γ8

!
, Γ8

'
, which are certain spin-colour matrices written explicitly in Eq. (3). Even

in the chiral limit, these QCD operators with different dimensions will mix with each other under
renormalization due to the <1 scale, so the 1/<1 series is not well-defined. It is convenient to match
to Heavy Quark Effective Theory (HQET) to remove this scale and have a proper 1/<1 expansion,
matching the QCD 1-quark field onto a heavy (static) & field. Performing this expansion we obtain
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where `2
c , `

2
�

are the kinetic and chromomagnetic energies which are known precisely from spec-
troscopy [5], and we retain relativistic normalization of our states. Of the $ (1/<3

1
) contributions to

the inclusive decay rate, the ‘spectator effects’ in which light-quark degrees of freedom participate
in the decay as well as the heavy quark dominate due to phase-space suppression of the other factors
[4]. These come from the matrix elements of the dimension-6 operators
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where %! =
1−W5

2 , %' =
1+W5

2 are the left/right projectors. Matrix elements of the above operators
contain a contraction where a light valence quark from the hadron participates in the interaction, but
also a tadpole-like contraction where the light quark in the operator is contracted in a loop as shown
in Fig. 1. Only the former contraction is considered to be a spectator effect [4] as a light valence
quark actually participates in the interaction. In this work we will only compute this contribution.
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Figure 1: Two types of contractions shown for a �-meson matrix element. The double-line corresponds
to a heavy quark propagator, whereas the single lines are light quark propagators (D, 3). The tadpole-like
contraction shown on the right is not computed for either the meson or baryon in this work.

For the �-meson matrix elements, this tadpole subtraction is equivalent to considering isospin
non-singlet versions of the operators. The contribution of the isospin-singlet piece vanishes when
studying lifetime ratios such as g(�+)/g(�3). Furthermore, isospin symmetry causes the operators
to be protected from mixing with lower dimensional operators such as 11. The matrix elements are
conventionally parametrised for the mesonic states as [1]

〈�3 | ($3
+−� −$D

+−�) |�3〉
"�

= 5 2
��1"�,

〈�3 | ($3
(−% −$D

(−%) |�3〉
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〈�3 | ()3
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= 5 2
�n1"�,

〈�3 | ()3
(−% − )D

(−%) |�3〉
"�

= 5 2
�n2"�,

(4)

where in the vacuum insertion approximation, �1 = �2 = 1, n1 = n2 = 0. By heavy-quark symmetry,
the number of matrix elements is only 2 and not 4 for the Λ& baryon, as the (+ − �) and ((−%) type
matrix elements are the same up to 1/<1 corrections (which would appear as $ (1/<4

1
) corrections

to the lifetime, outside of the scope of this work). By isospin symmetry, the up-quark and down-
quark type operators give the same matrix element for the Λ& baryon. To isolate the spectator
effects, we consider the normal-ordered version of the operator that does not have a tadpole-like
contraction [4]. They are traditionally parametrised as [1]

〈Λ& |$@

+−�|Λ&〉tp.sub.

"Λ1

= 5 2
�!1"�,

〈Λ& |)@

+−�|Λ&〉tp.sub.

"Λ1

= 5 2
�!2"�, (5)

where the subscript reminds us that the matrix elements are tadpole subtracted. For the Λ& baryon,
the analogue of the vacuum-insertion approximation is the valence-quark approximation, which
gives !2 = − 2

3!1 [4].
Previous quenched lattice studies of the mesonic [6] and baryonic [7] matrix elements with

Clover fermions have been performed. Preliminary results of an unquenched study were also
presented [8], with calculations of the �-meson matrix elements extrapolated to physical "�1

.
Our goal with this calculation is to perform the first lattice calculation of the quantities in Eqs. (4)
and (5) with dynamical Ginsparg-Wilson (in particular, domain-wall) fermions, and improve on the
precision and systematic control that was achieved in previous work. The fermion discretisation
may be important as it is chiral symmetry that suppresses some mixing coefficients of the operators
in Eq. (4). Recently there have also been studies of alternative methods to calculating the inclusive
decay rates using lattice methods but without an OPE [9]. A more precise calculation using the

3
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OPE would allow for better comparisons between the two methods, and could be crucial for further
investigations into quark-hadron duality violations. Further work may also allow us to probe charm
systems with the heavy-quark expansion, of interest due to recent experimental results [10].

2. Lattice Setup and Fitting Procedure

We use (2+1)-flavor Domain-Wall Fermion ensembles [11] which were generated by the RBC-
UKQCD collaboration using the Shamir DWF action [12, 13], with an Iwasaki gauge action. The
parameters of the ensembles that are used are given in Table 1.

Ensemble Lattice Volume 0−1 (GeV) <c (MeV)
24I 243 × 64(×16) 1.785(5) 339.7(1.3)
32I 323 × 64(×16) 2.383(9) 302.4(1.2)

Table 1: Parameters for the ensembles used in this study. Values taken from Table IX in [11].

As we are working in lattice-HQET, the heavy quark is treated as a static Wilson line. To
improve the statistical behaviour, we use Wilson Flow [14], which allows us to smear gauge links
on the order of

√
8C, where C is the flow time. To recover the continuum zero-flow-time matrix

elements, it is enough to compute the matrix elements for a fixed lattice flow-time 0−2C for various
lattice spacings, and take the continuum limit. We compute correlation functions on flow time
0−2C ∈ {0.5, 1.0, 2.0}, as we found that at smaller flow-times the extraction of the matrix elements
was unreliable. Domain-Wall-Fermion valence propagators have previously been computed for the
light quarks for various source-sink separations, with Gaussian smearing in the spatial directions.
The interpolating operators we will use to excite the � meson and the Λ& baryon are given by

�
†
C ,B = &CW

5@B, Λ
†U
C,B = n012 (D0B (�W5)31)B )&2U

C , (6)

respectively. The subscripts C, B on the quark fields and the corresponding operators emphasize the
fact that there is a choice of flow-time C ∈ R+ for the heavy-quark field, and also a choice of smearing
B ∈ {Local, Smeared} for the light quark. To extract the matrix elements, we first compute two and
three point correlation functions using contraction code based on the Chroma library [15]

�
CB1B2
2 (gsrc, gsnk) = 〈Ω|�C ,B1 (gsnk)�†C ,B2

(gsrc) |Ω〉,
�

CB1B2
3 (O; gsrc, gop, gsnk) = 〈Ω|�C ,B1 (gsnk)OC ,! (gop)�†C ,B2

(gsrc) |Ω〉,
(7)

where �
†
C ,B ∈ {�†

C ,B,Λ
†U
C,B} is one of the hadronic creation operators. Since the heavy quark is static,

all operators are at the same spatial location (whose value is suppressed in Eq. (7)) and only differ
in their temporal coordinate. The operator insertion $ is always local (unsmeared). To model the
excited states, we use an =-state model

�
CB1B2
2 (gsrc, gsnk) =

=∑
8=1

/ 8∗
B1/

8
B24

−�8 (gsnk−gsrc) ,

�
CB1B2
3 (O; gsrc, gop, gsnk) =

=∑
8, 9=1

/ 8∗
B1/

9
B24

−�8 (gsnk−gop)−� 9 gop 〈�& |O|�&〉lat,

(8)
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where the same excited states are assumed to be dominant in both the two and three-point fits.
Combined fits are performed to the two- and three-point correlation functions, using the gvar and
corrfitter packages [16]. We perform fits over several different fitting ranges, indexed by two
variables 2 ≤ g

(2)
cut , g

(3)
cut ≤ 6. This corresponds to fitting the 2-point functions with minimum

separation gsnk−gsrc ≥ g
(2)
cut , and the 3-point functions with minimum source-operator and operator-

sink separation gsnk−gop, gop−gsrc ≥ g
(3)
cut . The two-point functions are also only fit with source-sink

separation gsnk − gsrc ≤ 3)
8 where ) is the total time-extent of the lattice, avoiding the need to model

thermal effects. On the 24I ensembles the previously computed propagators allow for correlation
functions to be determined for source-sink separations corresponding to gB=: − gsrc ∈ {2, · · · , 15},
whereas on the 32I ensemble there are fewer source-sink separations, gsnk − gsrc ∈ {3, 6, 9, 12, 15}.
The propagators have been computed for various pre-defined source patterns, so we first average
the�2 and�3 functions over each gauge configuration for fixed separations, and then bootstrap over
the configurations to estimate statistical uncertainties.

Our analysis procedure is similar to the one performed in Ref. [17]. For a given fitting range
indexed by g

(2)
cut , g

(3)
cut , we use the Akaike Information Criterion [18] to choose how many excited

states to include in the fit. Explicitly, we increase the number of excited states to include in the
fit, until the j2/#d.o.f improves by less than a fixed constant A = 0.1. For all the fits 5 that have
j2/#d.o.f < 2, associated to extracted matrix elements " 5 with statistical uncertainty X" 5 , we
weight them according to

F 5 =
? 5 (X" 5 )−2∑
5 ′ ? 5 ′ (X" 5 ′)−2 , " =

∑
5

F 5 " 5 ,

Xstat"
2
=

∑
5

F 5 X"
2
5 , Xsys"

2
=

∑
5

F 5 (" 5 − " 5 )2, X"
2
= Xstat" 5

2 + Xsys" 5

2
,

(9)

where ? 5 = Γ(#d.o.f/2, j2/2)/Γ(#d.o.f/2) is the ?-value of each respective fit, computed using
the upper incomplete gamma function Γ(·, ·) and the standard gamma function Γ(·). " ± X" is the
combined extracted matrix element, with combined statistical and systematic uncertainties.

3. Fit Results

For display purposes, it is convenient to plot the ratio ' of the three-point to two-point functions
as the /-factors cancel,

' :=
�

CB1B2
3 (O; gsrc, gop, gsnk)
�

CB1B2
2 (gsrc, gsnk)

, lim
gsnk−gop,gop−gsrc→∞

' → 〈�1 |O|�1〉lat. (10)

Note that we directly fit the correlation functions themselves rather than the ratios.
The fits shown in Fig. 2 and Fig. 3 correspond to fits performed at the fixed lattice flow-time

0−2C = 2.0, for the meson and baryon matrix elements respectively. The ratios plotted are with
both source and sink smeared. The errorbars on the datapoints were obtained by bootstrapping the
ratio over the gauge configurations, and we can see clear plateaus forming in the gsnk − gsrc → ∞
limit for the non-color mixed meson matrix elements, and both the baryonic matrix elements. The
horizontal band represents the total (stat+sys) uncertainty on the extracted matrix element. The

5
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Figure 2: Plots of the three-to-two point ratio functions for the �-meson matrix elements on the 24I ensemble,
which should converge to the matrix element as gsnk − gop, gop − gsrc → ∞. Within each choice of source-sink
separation, there is an additional choice of the operator insertion time, and we can see plateaus forming when
the operator is inserted far from both the source and sink. The blue line is the extracted matrix element,
and the band represents the uncertainty (statistical and systematic). As expected, the color-mixed matrix
elements in the bottom two panels are suppressed (here by about a factor of 10) compared to the unmixed
ones.

4 5 6 7 8 9 10 11 12 13 14 15
τsnk − τsrc

0

2

4

×10−1 RΛb
(Oq

V−A)tp.sub.

4 5 6 7 8 9 10 11 12 13 14 15
τsnk − τsrc

−2

−1

0
×10−1 RΛb

(T qV−A)tp.sub.

Figure 3: Same plot as Fig 2, except for the two different baryon matrix elements on the 24I ensemble.
There is no longer any suppression for the color-mixed operator, as the contraction pattern is different in the
baryon case (There is no Tr() �) in the free limit).
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Figure 4: Bare �-meson matrix elements as a function of the square root of the lattice flow time. The
inner error-bar is the statistical uncertainty, and the outer error bar is the combined statistical and systematic
uncertainty from the fits. Increasing flow time allows us to constrain the matrix elements much better. At
large flow-time, the error is dominated by statistical uncertainty.

0.6 0.8 1.0 1.2 1.4

a−1
√
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-2e-01

-1e-01
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√
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4e-02

6e-02

8e-02

〈ΛQ|T qV−A|ΛQ〉tp.sub.

Figure 5: Bare Λ& matrix elements as a function of the square root of the lattice flow time. There is less
variation in the size of the error-bar compared to the meson case, but the extraction still becomes unreliable
for 0−1√C < 0.5.

flow-time dependence of the extracted mesonic matrix elements is shown in Fig. 4, and for the
baryonic matrix elements is shown in Fig. 5.

4. Conclusion and Outlook

In this work we provide a new lattice determination of the dimension-6 matrix elements that
contribute to spectator effects in the inclusive decay rates of 1-hadrons. By computing these matrix
elements at fixed lattice flow-times 0−2C for various values of 0, we can renormalize matrix elements
on each ensemble, and taking the continuum limit we recover the zero flow-time, continuum matrix
elements. We plan on performing a non-perturbative position-space renormalization, followed
by a perturbative matching to "( in the continuum. We also plan on studying the tadpole-like
contraction contributions to the baryon matrix elements, which have not yet been studied using
lattice methods.
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