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𝑉𝑢𝑏 is the smallest and least known of all CKM matrix elements; the community currently
determines its magnitude primarily through the exclusive process 𝐵 → 𝜋ℓ𝜈̄. Here we present our
progress toward a lattice QCD determination of the 𝑉𝑢𝑏 matrix element from a novel transition –
the 𝐵 → 𝜋𝜋ℓ𝜈̄ process, where the 𝜋𝜋 system is in a 𝑃 wave and scattering features the 𝜌(770)
resonance as an enhancement. We perform our calculation on 𝑁 𝑓 = 2 + 1 isotropic clover
fermions on a lattice of 𝐿 ≈ 3.6 fm and a pion mass of ≈ 320 MeV; for the 𝑏-quark we use the
anisotropic clover action. After a brief overview of the theoretical framework, we will discuss
some preliminary results.
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1. Introduction

𝑉𝑢𝑏 is the smallest and least known of all Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments. The community currently determines its magnitude primarily through the exclusive process
𝐵 → 𝜋ℓ𝜈̄, although the purely leptonic 𝐵 → 𝜏𝜈 and fully inclusive 𝐵 → 𝑋𝑢ℓ𝜈̄ semileptonic decay
also contribute [1]. There is, however, a puzzle regarding the determination of 𝑉𝑢𝑏 - the determi-
nations of |𝑉𝑢𝑏 | from 𝐵 → 𝑋𝑢ℓ𝜈̄ are in tension1 with those using the exclusive 𝐵 → 𝜋ℓ𝜈̄ decay
rate. To better understand the tension, an additional exclusive channel to determine 𝑉𝑢𝑏 would be
beneficial. Such a channel is 𝐵 → 𝜌(→ 𝜋𝜋)ℓ𝜈̄ where the 𝜌(770) resonance is present, which
in addition to opening a new determination of 𝑉𝑢𝑏, also provides complementary constraints on
right-handed 𝑏 → 𝑢 currents for beyond the standard model physics [2]. Experimental data for this
channel are available from Babar, Belle, and Belle II [3–5]; however, the relevant hadronic matrix
elements from theory are not yet known to sufficient precision.

Previous lattice calculations of the 𝐵 → 𝜌(→ 𝜋𝜋)ℓ𝜈̄ process were done in the quenched
approximation and assumed the 𝜌 resonance to be stable under the strong interaction [6, 7]. Here
we present our preliminary results for the 𝐵 → 𝜌(→ 𝜋𝜋)ℓ𝜈̄ transition from lattice QCD; we
perform our calculation at a pion mass where the 𝜌 appears as a resonance. To take care of
the finite-volume normalization, we use Lellouch-Lüscher factors in our analysis, enabling us to
determine the transition amplitude in a range of 𝜋𝜋 invariant masses, 𝐸★, and momentum transfers
𝑞2. This work is the extension of our previous 𝜋𝛾 → 𝜋𝜋 study [8].

2. Gauge Ensemble

We present preliminary results on a single gauge field ensemble with 𝑁 𝑓 = 2+1 clover Wilson
fermions whose quark masses correspond to 𝑚𝜋 ≈ 320 MeV. The lattice spacing is approximately
𝑎 = 0.114 fm, and the lattice volume is 𝑁3

𝐿
× 𝑁𝑡 = 323 × 96. The pion dispersion relation is shown

in Fig. 1 of Ref. [9]. For the 𝑏-quark, we use an anisotropic action [10, 11], in which we tune the
quark mass and anisotropy parameters to match the 𝐵𝑠 meson rest and kinetic mass. This gives the
𝐵-meson dispersion shown in Fig. 1.

3. The 3-point correlation functions

The 3-point correlation functions definition is

𝐶𝑖
3 = 〈Ω|𝑂𝑖 (Δ𝑡; ®𝑃,Λ, 𝑟)𝐽 (𝑡𝐽 ; ®𝑞, 𝜇)𝐵†(0; ®𝑝𝐵) |Ω〉, (1)

where the source is at timeslice 0, the current 𝐽 (𝑡𝐽 ; ®𝑞, 𝜇) with momentum ®𝑞 at timeslice 𝑡𝐽 and
the sink at timeslice Δ𝑡. The source part of the 3-point correlation functions consists of a single
𝐵-meson interpolator, 𝐵(0; ®𝑝𝐵) =

∑
®𝑥 𝑒

𝑖 ®𝑝𝐵 · ®𝑥𝑞𝛾5𝑏(®𝑥) with momentum ®𝑝𝐵. For the sink part, we
use three or four interpolators 𝑂𝑖 (Δ𝑡; ®𝑃,Λ, 𝑟) built from either one- or two-hadron operators in the
irreducible representation Λ and row 𝑟. Here ®𝑃 is the total momentum of the two-hadron system,

1Recent more conservative error estimates for the inclusive determination have reduced the tension [1].
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Figure 1: The 𝐵-meson dispersion relation.

projected to the irreducible representationΛ of the Little Group defined by ®𝑃. The current insertion,
𝐽 (𝑡𝐽 ; ®𝑞, 𝜇), is 𝑂 (𝑎) improved through:

𝐽 (𝑡𝐽 ; ®𝑞, 𝜇) =
√︁
𝑍𝑢𝑍𝑏 (𝑢̄Γ𝑏 + 𝑑 (𝑏) 𝑢̄Γ𝛾𝑖∇𝑖𝑏), (2)

where Γ is either 𝛾𝜇 or 𝛾𝜇𝛾5, 𝑑 (𝑏) is the improvement coefficient, and 𝑍 𝑓 are renormalization
coefficients of the flavor-conserving temporal vector current for quark flavor 𝑓 . To determine the

q̄Γq b̄γ5q

q̄Vb
q̄γ5q

b̄γ5q

q̄Vb

q̄γq

Figure 2: The Wick contractions relevant to the 𝐵 → 𝜋𝜋ℓ𝜈̄ transition. Left is the Wick contraction for the
single-hadron sink operator, while the right is the Wick contraction for the two-hadron sink operator. We
project both Wick contractions to 𝐼 = 1, 𝐼𝑧 = 0 in the sink.

3-point correlation functions, we evaluate the Wick contractions shown in Fig. 2; Fig. 3 shows an
example of the 3-point correlation functions in the 𝐵3 representation of ®𝑃 = 2𝜋

𝐿
[0, 1, 1]. The first

two panels employ one-hadron, 𝑞𝛾𝑖𝑞 and 𝑞𝛾𝑡𝛾𝑖𝑞 sink operators, while the last two panels show
3-point correlation functions with two-hadron operators at the sink. To construct 3-point functions
with dominant overlap to a single finite-volume state, we construct a linear combination 𝐶𝑛

3 of
the four 3-point correlation functions 𝐶𝑖

3 with coefficients 𝑢𝑛
𝑖

taken as the 𝑛-th state generalized
eigenvector of the GEVP analysis [9], 𝐶𝑛

3 = 𝑢𝑛
𝑖
𝐶𝑖

3. The projection leads to an optimized correlation
function that dominantly overlaps with a single finite-volume state:

𝐶𝑛
3 = 〈𝑛,Λ, ®𝑃 |𝐽 |𝐵, ®𝑝𝐵〉〈𝐵, ®𝑝𝐵 |𝑂𝐵 |Ω〉

𝑒−𝐸𝑛 (Δ𝑡−𝑡𝐽 )𝑒−𝐸
𝐵
0 (𝑡𝐽−0)

2𝐸𝑛2𝐸𝐵
0

+ excited state cont., (3)
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Figure 3: Examples of 3-point correlation functions are shown with filled circles; the left-most panel shows
the 𝑂𝑖=1 = 𝑞𝛾𝑖𝑞 operator, the second-to-left-most shows the 𝑂𝑖=2 = 𝑞𝛾𝑡𝛾𝑖𝑞 operator, the second-to-right-
most shows 𝑂𝑖=3 = 𝜋( ®𝑝1)𝜋( ®𝑝2) with | ®𝑝1 | = 0, | ®𝑝2 | = 2𝜋

𝐿

√
2, and the right-most shows 𝑂𝑖=4 = 𝜋( ®𝑝1)𝜋( ®𝑝2)

with | ®𝑝1 | = 2𝜋
𝐿

, | ®𝑝2 | = 2𝜋
𝐿

√
3. The relative uncertainties,

𝜎𝐶3,𝑖
𝐶̄3,𝑖

, are shown as filled diamonds.

where 〈𝑛,Λ, ®𝑃 |𝐽 |𝐵, ®𝑝𝐵〉 is the sought-for matrix element, and the "excited state cont." are similar
products with matrix elements involving excited states of the source and sink irreducible represen-
tations. These differ from the desired matrix element in their size and temporal dependence. If we
multiply the leading-order time dependence out of 𝐶𝑛

3 , we can fit the matrix elements with models
where we can consider the source, sink, or both sides of excited state contaminations. We show an
example of such a matrix element in Fig. 4, where the dots with uncertainties represent the lattice
data, the light-shaded region the fit of the full model, including excited state contamination, and
the dark-shaded region the matrix element value. To determine the matrix elements, we vary the fit
models and fit windows, which yields a total of 64 matrix elements spread across different 𝑞2 and√
𝑠.

4. Fitting the Matrix Elements

The significant interactions in the finite-volume state (i.e., those that lead to the 𝜌 resonance)
affect the normalization of the matrix elements, an effect taken into account by the Lellouch-Lüscher
factor [12, 13]. In these proceedings, we follow the approach of Briceño, Hansen, and Walker-
Loud [14] and use the particular implementation discussed in Ref. [15] to map the infinite-volume
amplitudes onto the finite-volume matrix elements. For full generality, we thus do not map each
finite-volume matrix element to its infinite-volume counterpart (even though this is possible in
the 𝜋𝜋 channel) but rather fit the finite-volume matrix elements directly. The general form of the
transition amplitude H 𝜇

1,𝑚ℓ
can be written as

H 𝜇

1,𝑚ℓ
(𝑞2, 𝐸★2) = A𝜇

1,𝑚ℓ
(𝑞2, 𝐸★2)𝑇 (𝐸

★2)
𝑘

, (4)
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Figure 4: An example of the state-projected 3-point correlation function without the Lorentz symmetry
factor. We factor out the leading-order temporal dependence to demonstrate the matrix element and excited
state contributions. Shown is the ground state of the irreducible representation 𝐵3 of ®𝑃 = 2𝜋

𝐿
[0, 1, 1] with

®𝑝𝐵 = 2𝜋
𝐿
[0, 1, 1]. The discrete data points are the lattice-determined matrix element, the light-shaded region

is the full model, which includes source and sink excited-state contamination, and the dark-shaded region is
the determined matrix element.

where, for the case of the vector current, A𝜇

1,𝑚ℓ
will have the following Lorentz decomposition

A𝜇

1,𝑚ℓ
=

𝑖𝑉

𝑚𝐵 + 2𝑚𝜋

𝜀𝜇𝜈𝛼𝛽𝜖𝜈∗(𝑃, 𝑚ℓ)𝑃𝛼 (𝑝𝐵)𝛽 . (5)

Here, V is the transition form factor, 𝑃 is the four-momentum of the two-hadron state, 𝑝𝐵 is the
four-momentum of the initial 𝐵-meson, and 𝜖 is the polarization vector of the two-hadron state with
𝐽 = 1 and third component 𝑚ℓ . The invariant 𝑃 · 𝑃 = 𝐸★2 denotes the 𝜋𝜋 invariant mass, and the
invariant 𝑞2, where 𝑞 = 𝑃 − 𝑝𝐵, is the momentum transfer.

To determine the infinite-volume transition amplitude, we first pick a parameterization for 𝑉 ,
set its parameters to initial values, and then obtain the finite-volume matrix elements through

〈𝑛,Λ, ®𝑃 |𝐽 |𝐵, ®𝑝𝐵〉 =
1√︃

2𝐸𝐵
0
√

2𝐸𝑛

√︄
2𝐸★

𝑛

−𝜇★0
′ 𝑉, (6)

where 𝜇★0 is the non-zero eigenvalue of the residue matrix 𝑅,

𝑅 = 2𝐸𝑛 lim
𝐸→𝐸𝑛

𝐸 − 𝐸𝑛

𝐹−1 + 𝑇
, (7)

and 𝐸𝑛 is the finite-volume energy corresponding to the state 〈𝑛,Λ, ®𝑃 |. In Eq. (6), 𝜇★′

0 is the
derivative of 𝜇★0 with respect to 𝐸★.

From the model matrix element and the lattice data, we construct a 𝜒2 function and then
minimize the 𝜒2 function for the model parameters. In these proceedings, we consider a single

5
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Figure 5: The transition amplitude A(𝑞2, 𝐸★) = 𝑉𝑇
𝑎𝑘

of the vector current of the 𝐵 → 𝜋𝜋ℓ𝜈̄ transition in the
isospin basis. Shown is the region of 𝑞2 and 𝐸★, where lattice data is available.

model of the transition amplitude, where the 𝜋𝜋 scattering amplitude 𝑇 is the Breit-Wigner I
amplitude used in Ref. [9]; it fully describes the pole structure in the 𝐸★ variable. As such, 𝑉 is a
smooth function of 𝐸★, but still has singularities in the momentum transfer, 𝑞2, variable, above the
semileptonic region. We parametrize 𝑉 using a generalization of the 𝑧-expansion [16, 17]

𝑉 =
1

1 − 𝑞2

𝑚𝐵★

𝑛max,𝑚max∑︁
𝑛=0,𝑚=0

𝑎𝑛,𝑚𝑧
𝑛S𝑚, (8)

where S =
𝐸★2−(2𝑚𝜋 )2

(2𝑚𝜋 )2 and

𝑧 =

√︁
𝑡+ − 𝑞2 − √

𝑡+ − 𝑡0√︁
𝑡+ − 𝑞2 + √

𝑡+ − 𝑡0
. (9)

Here, 𝑡+ corresponds to the 𝐵𝜋 threshold, and we use 𝑡0 = 6.0 in lattice units. The 𝐵∗-meson pole is
included explicitly as a prefactor in Eq. (8). Our preliminary fit does not include S dependence, we
used 𝑛max = 1, 𝑚max = 0. We show the central value of the resulting transition amplitude in Fig. 5;
as our matrix elements are in the isospin basis of the final 𝜋𝜋 state, so is the transition amplitude.
The fit presented used 51 points at various 𝐸★ and 𝑞2 and yields a 𝜒2/dof = 1.4. The corresponding
parameters are 𝑎0 = 0.2405(45) and 𝑎1 = −0.09(11).

6
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5. Summary

We have presented our preliminary results for the vector form factor of the 𝐵 → 𝜋𝜋ℓ𝜈̄ transition;
we plan to determine the axial-vector form factors as well. Here we presented the state-projected
3-point correlation functions and their fits used to determine the matrix elements. Taking the
Lellouch-Lüscher factors into account, we normalize the finite-volume matrix elements that enter
the global analysis of the transition amplitude. In this manner, we have determined the 𝐵 → 𝜋𝜋ℓ𝜈̄

transition amplitude in the region of large 𝑞2 and 𝜋𝜋 invariant mass near the 𝜌(770) resonance. We
have shown an initial fit to a subset of all our data and demonstrated the approach’s viability.
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