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1. Introduction

Chiral Perturbation Theory (ChPT) has proven to be a reliable tool for computing the excited
states contamination of lattice correlators. For example, in [1, 2] the excited states of the induced
pseudoscalar form factor of the nucleon 𝐺̃ 𝑝 were computed in baryon ChPT and were found to be
a possible explanation for the discrepancy between lattice simulations and experimental results for
𝐺̃ 𝑝. It can even help to test the validity of lattice methods to eliminate excited states, see [3].

Semileptonic decays of 𝐵 mesons are an active field of research with the aim of determining
CKM matrix elements to a high precision. For 𝐵 → 𝜋ℓ𝜈̄, this requires the computation of the
matrix elements ⟨𝜋 |𝑉𝜇 |𝐵⟩ which are conveniently decomposed into the form factors ℎ⊥ and ℎ∥
in Heavy Quark Effective Theory (HQET). The computation of the dominant 𝐵∗𝜋 excited states
contamination can be carried out in Heavy Meson ChPT (HMChPT) [4–7] and will be presented
here. See O. Bär’s contribution [8] for further results on 𝐵∗𝜋 states in HMChPT. We will rely
heavily on the material presented there.

2. Vector Form Factors

The decay 𝐵 → 𝜋ℓ𝜈̄ can be decomposed into two parts: an initial state 𝐵 meson decays via
the weak interaction into a pion by emitting a 𝑊 boson. The latter subsequently decays to a ℓ𝜈̄ final
state. The propagation and decay of the vector boson can be computed in electroweak perturbation
theory, whereas the propagation and decay of the meson via the interaction with the left-handed
current 𝐿𝜇 = 𝑉𝜇 − 𝐴𝜇, to which the 𝑊 boson couples, must be computed in a lattice simulation.
Since the axial current does not contribute to the process, the matrix element for 𝐵 → 𝜋 can be
parametrised as follows:

⟨𝜋(𝑝𝜋) |𝑉𝜇 |𝐵(𝑝𝐵)⟩ =
(
(𝑝𝐵 + 𝑝𝜋)𝜇 − 𝑞𝜇

𝑚2
𝐵
− 𝑚2

𝜋

𝑞2

)
𝑓+(𝑞2) + 𝑞𝜇

𝑚2
𝐵
− 𝑚2

𝜋

𝑞2 𝑓0(𝑞2) . (1)

Here 𝑞𝜇 = (𝑝𝐵 − 𝑝𝜋)𝜇 is the momentum transfer. If one assumes 𝑚ℓ = 0 in the 𝐵 → 𝜋ℓ𝜈̄ decay,
only 𝑓+ will contribute to the decay width of the process.

In HQET, a possible decomposition reads [9]

(2𝑚𝐵)−1/2 ⟨𝜋(𝑝) |𝑉0 |𝐵(0)⟩ = ℎ∥ (𝑣 · 𝑝) , (2)
(2𝑚𝐵)−1/2 ⟨𝜋(𝑝) |𝑉 𝑘 |𝐵(0)⟩ = 𝑝𝑘ℎ⊥(𝑣 · 𝑝) , (3)

where 𝑣𝜇 is the four velocity of the 𝐵 meson

𝑣𝜇 =
𝑝
𝜇

𝐵

𝑚𝐵

. (4)

Matching these form factors to the relativistic ones reveals that 𝑓+ is dominated by ℎ⊥ and the
contribution of ℎ∥ is suppressed by a factor 1/𝑚𝐵 [10].
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3. Parametrization of the Excited States Contamination in the Vector Form Factors

In lattice simulations, one computes the 3-point function

𝐶3,𝜇 (𝑡, 𝑡v, ®𝑝) =
∫
𝐿3

d3𝑥 d3𝑧 𝑒−i ®𝑝 ( ®𝑥−®𝑧)
〈
Π+(𝑡, ®𝑥)𝑉−

𝜇 (𝑡v, ®𝑧)B̄0†(0, ®0)
〉
, (5)

where ®𝑝 is the momentum of the final state pion. Π and B̄ denote interpolating fields for a pion and
a 𝐵̄0 meson. Using the 2-point functions 𝐶𝐵

2 and 𝐶Π
2 of the interpolating fields, we can define the

ratio

𝑅𝜇 (𝑡, 𝑡v, ®𝑝) =
√

2𝐸𝜋𝐶3,𝜇 (𝑡, 𝑡v, ®𝑝)√︃
𝐶𝐵

2 (2𝑡v)𝐶Π
2 (2𝑡 − 2𝑡v)

, (6)

which for 𝑡v, (𝑡 − 𝑡v) → ∞ is equal to the l.h.s. of eqs. (2) and (3), respectively, depending on the
index 𝜇. Every correlator can be written as the sum of the ground state contribution 𝐶

𝑔.𝑠.

𝑖
and the

excited states contamination 𝐶𝑒.𝑠.
𝑖

which we will use to define

𝐶𝑖 = 𝐶
𝑔.𝑠.

𝑖
+ 𝐶𝑒.𝑠.

𝑖 = 𝐶
𝑔.𝑠.

𝑖

(
1 +

𝐶𝑒.𝑠.
𝑖

𝐶
𝑔.𝑠.

𝑖

)
≡ 𝐶

𝑔.𝑠.

𝑖
(1 + 𝛿𝐶𝑖) . (7)

𝛿𝐶𝑖 thus quantifies the relative deviation of the correlator from the ground state caused by the
excited states contamination. In the following, we will focus on the dominant excited states, which
are given by two particle 𝐵∗𝜋 states, see [8]. Plugging this decomposition into eq. (6) and assuming
that 𝛿𝐶𝑖 is small (which is true for large enough time separations), we can Taylor expand to obtain
after comparing with eqs. (2) and (3)

𝛿ℎ∥ = 𝛿𝐶3,4(𝑡, 𝑡v, ®𝑝) −
1
2

(
𝛿𝐶𝐵

2 (2𝑡v) + 𝛿𝐶Π
2 (2𝑡 − 2𝑡v)

)
, (8)

𝛿ℎ⊥ = 𝛿𝐶3,𝑘 (𝑡, 𝑡v, ®𝑝) −
1
2

(
𝛿𝐶𝐵

2 (2𝑡v) + 𝛿𝐶Π
2 (2𝑡 − 2𝑡v)

)
. (9)

The excited states contamination 𝛿𝐶Π
2 of the pion 2-point function is much smaller than the other

two terms and will be neglected in the following.
Our aim is to compute the above 3-point function in HMChPT to NLO in the chiral expansion

and in the static limit. Combining our result for 𝛿𝐶3 with the result for 𝛿𝐶𝐵
2 presented in [8] allows

us to evaluate the excited states contamination of the form factors.

4. Interpolating Fields

In order to compute the 3-point function in eq. (5) in ChPT, we need the interpolating fields
and the vector current in the effective theory. These are discussed in [8]. The results below will
be functions of the NLO Low Energy Constants (LECs) of the (smeared) 𝐵 meson interpolating
field (𝛽1) and the vector current (𝛽1 and 𝛽2). Note that if no smearing is applied to the 𝐵 meson,
𝛽1 = 𝛽1 due to Heavy Quark Spin Symmetry. A strategy to determine 𝛽1 can be found in [8], the
determination of 𝛽2 is presented in section 6.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 1: Feynman diagrams for the 3-point function 𝐶3,𝜇. The cross represents the interpolating field
destroying the pion, the filled triangle the vector current, and the triangle on the left denotes the interpolating
field creating a 𝐵̄0. Double lines represent heavy meson propagators, the dashed lines the propagator of the
pion. We do not distinguish between the pseudoscalar 𝐵 and vector 𝐵∗

𝜇 meson propagator.

5. Results

5.1 ℎ⊥

It follows from eqs. (8) and (9) that we need the excited states of the 𝐵 meson 2-point function
for both form factors. The result can be found in [8]. For the 3-point function with spatial
components of the vector current, the result can be parametrised as follows (see Fig. 1 for the
Feynman diagrams):

𝛿𝐶3,𝑘 (𝑡, 𝑡v, ®𝑝) = −1 + 𝛽1𝐸𝜋 ( ®𝑝)/𝑔
1 − 𝛽1𝐸𝜋 ( ®𝑝)/𝑔

𝑒−𝐸𝜋 ( ®𝑝)𝑡v +
∑︁
®𝑙

1
( 𝑓 𝐿)2(𝐸𝜋 (®𝑙)𝐿)

𝑐(®𝑙, ®𝑝, 𝛽1, 𝛽1, 𝛾)𝑒−𝐸𝜋 (®𝑙)𝑡v .

(10)
The first term stands out since it is not volume-suppressed, i.e. there is no factor 1/𝐿3 and no
momentum sum. This correlator is the only one considered here and in [8] with such a term, but
it has already been observed in induced nucleon form factors in [1] and there explained the large
excited states contamination in the lattice correlator. Diagrams (b) and (c) in Fig. 1 are responsible
for this “volume-enhanced” contribution. Setting 𝛽1 = 𝛽1 = 0, i.e. at leading order in the chiral
expansion, we see that this term is simply given by the negative of an exponential, which falls off
with the energy of the outgoing pion. One can thus expect to find a large negative excited states
contamination since the second term in eq. (10) and the excited states contribution of the 2-point
function are expected to be smaller.
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Figure 2: The LO deviation 𝛿ℎ⊥ (solid line) and bounds for the NLO estimates (dashed lines) for a pion
momentum of | ®𝑝 | = 220 MeV as a function of 𝑡v.
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Figure 3: The LO deviation 𝛿ℎ⊥ (solid line) and bounds for the NLO estimates (dashed lines) at 𝑡v = 1.3 fm
as a function of | ®𝑝 |.

The coefficient function 𝑐 of the volume suppressed contribution is a function of the LECs of
the interpolating field and vector current, 𝛽1 and 𝛽1, and 𝛾, which is a linear combination of LECs
of the NLO Lagrangian. It is the same combination which was already found for the excited states
contamination of the 𝐵𝐵∗𝜋 coupling [8].

Fig. 2 shows the result of 𝛿ℎ⊥ as a function of 𝑡v, the timespan for which the 𝐵∗𝜋 excited state
propagates, and a fixed final state pion momentum of ®𝑝 = 220 MeV, whereas Fig. 3 fixes 𝑡v = 1.3 fm
and varies ®𝑝. The momentum of 220 MeV corresponds to the smallest non-zero momentum on a
lattice with size 𝑚𝜋𝐿 = 4 with our parameters. The plots were created by taking the infinite volume
limit of the formulae, fixing 𝑚𝜋 = 140 MeV, 𝑓 = 93 MeV, and 𝑔 = 0.5. Since numerical estimates
for the NLO LECs 𝛽1, 𝛽1, and 𝛾 do not exist, we vary them in the range [−Λ−1

𝜒 ,Λ−1
𝜒 ] which can be

obtained from dimensional analysis. Here Λ𝜒 = 4𝜋 𝑓 denotes the chiral symmetry breaking scale.
It is also important to note that ChPT is a low energy effective theory and does not account for the
high energy pions in the momentum sums/integrals. In order to suppress them, one should consider

5
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Figure 4: The LO deviation 𝛿ℎ∥ (solid line) and bounds for the NLO estimates (dashed lines) for vanishing
final state pion momentum as a function of 𝑡v.
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Figure 5: The LO deviation 𝛿ℎ∥ (solid line) and bounds for the NLO estimates (dashed lines) at 𝑡v = 1.3 fm
as a function of | ®𝑝 |.

the results only for 𝑡v ≳ 1.3 fm.
As is evident from the figures, the excited states contribution are negative and large. This is

mostly due to the first term in eq. (10), the second term is of the order of a few percent. This also
explains why the excited states decrease as a function of ®𝑝, since the exponent of the first term
is proportional to 𝐸𝜋 ( ®𝑝). Overall, one expects large excited states for ℎ⊥ which might lower the
lattice results significantly if not taken care of accordingly.

5.2 ℎ∥

The 3-point function with the temporal component of the vector current,𝑉4, can be parametrised
as

𝛿𝐶3,4(𝑡, 𝑡v, ®𝑝) =
∑︁
®𝑙

1
( 𝑓 𝐿)2(𝐸𝜋 (®𝑙)𝐿)

𝑑 (®𝑙, ®𝑝, 𝛽1, 𝛽1, 𝛽2)𝑒−𝐸𝜋 (®𝑙)𝑡v . (11)

In contrast to 𝛿ℎ⊥, the function 𝑑 is a function of both NLO LECs of the vector current: 𝛽1 and
𝛽2. A strategy to compute the latter in a lattice simulation will be presented in the next section.
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We see that there is only a volume-suppressed contribution which suggests a smaller excited state
contamination for ℎ∥ than for ℎ⊥.

Figs. 4 and 5 show the results for 𝛿ℎ∥ as a function of 𝑡v and ®𝑝, respectively. In contrast to 𝛿ℎ⊥,
the excited states can be positive or negative and are only of the order of a few percent. Furthermore,
the dependence on the final state pion momentum ®𝑝 is mild. The impact on lattice simulations is
thus expected to be small.

6. Determination of 𝛽2

The results for 𝛿ℎ∥ and 𝛿ℎ⊥ depend on the LECs 𝛽1 and 𝛽2 of the interpolating fields and vector
current. We now present a method to determine 𝛽2 which is similar to the one for 𝛽1 presented in
[8]. It is necessary to compute the 3-point function

𝐶3(𝑡, 𝑡𝐴, ®𝑞) =
∫
𝐿3

d3𝑥 d3𝑦 𝑒i ®𝑞 ®𝑥
〈
𝐴𝑙𝑙

4 (𝑡, ®𝑥)𝐴
ℎ𝑙
𝑘 (𝑡𝐴, ®𝑧)B̄∗†

𝑘
(0, ®0)

〉
, (12)

where 𝐴𝑙𝑙
4 is the time component of the light-light axial vector current (destroying a pion), and 𝐴ℎ𝑙

𝑘

is a spatial component of the heavy-light axial current. Note the injection of momentum for the
pion. Computing the correlator to LO in ChPT (the diagram looks like (a) in Fig. 1) and dividing
by the 𝐵 meson 2-point function yields

𝑅(𝑡, 𝑡𝐴, ®𝑞) = −2i
𝐶3(𝑡, 𝑡𝐴, ®𝑞)
𝐶𝐵

2 (𝑡𝐴)
= (1 − 𝛽2𝐸𝜋 ( ®𝑞))𝑒−(𝑡−𝑡𝐴)𝐸𝜋 ( ®𝑞) . (13)

The excited states contamination in the 3-point function is suppressed by a relative factor exp(−𝑡𝐴𝐸𝜋).
Here, we have assumed that the 2-point function was computed with one point-like and one smeared
interpolating field. 𝛽2 can then be determined by computing 𝑅 for several values of the pion mo-
mentum ®𝑞. The time dependence can be eliminated by determining 𝐸𝜋 ( ®𝑞) and multiplying the ratio
with exp((𝑡 − 𝑡𝐴)𝐸𝜋 ( ®𝑞)). 𝛽2 can then be determined by a linear fit in 𝐸𝜋 ( ®𝑞).

7. Conclusions

We have computed the excited states contamination in the form factors ℎ∥ and ℎ⊥ in the static
limit of HMChPT. The relative magnitude of the excited states is of the order of a few percent for ℎ∥
and has only a mild dependence on the momentum of the final state pion, ®𝑝. On the other hand, ℎ⊥
receives large negative contributions which are more severe for smaller ®𝑝. This is due to the “tree
level” diagrams (b) and (c) in Fig. 1 which are analogous to diagrams computed for the induced
nucleon form factors in [1].

Considering the results presented here and in [8], there are in total three unknown LECs: 𝛽1,
𝛽2, and 𝛾 (since 𝛽1 can be determined in the same way as 𝛽1, we consider them as one LEC
here). A promising procedure for determining 𝛾 is not known to us, but our results do not depend
on it significantly. The most important LEC is the ubiquitous 𝛽1 which shows up in every single
correlator. A determination of this LEC in a lattice simulation is thus essential in order to have
reliable estimate for the excited states contamination of 𝐵 meson observables. We can nevertheless

7
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state that (with the exception of 𝛿ℎ⊥) all observables considered so far are at most of the order 10%
at 𝑡 ≈ 1.3 fm and lead to an overestimation.

Acknowledgments AB’s research is funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation), Projektnummer 417533893/GRK2575 “Rethinking Quantum Field
Theory”.
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