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1. Motivation

Many physical systems of experimental interest are of finite extent, be it the droplet of quark-
gluon plasma created in the interior of a relativistic heavy-ion collision [1] or a cavity which strongly
couples the light field to an electron [2, 3]. In each case weak-coupling methods fail and a lattice
field theory evaluation of observables is called for. A finite volume entails loss of translational
invariance, similar to when localized sources are explicitly placed in a system, a scenario relevant
for the study of e.g. quarkonium bound states in extreme conditions [4]. The question I would thus
like to address is how to develop improved discretization schemes for systems without translation
invariance.

The historic starting point for the discretization of lattice gauge theory is Wilson’s plaquette
action [5],

𝑃1×1
𝜇𝜈,𝑥 = 𝑈𝜇,𝑥𝑈𝜈,𝑥+𝑎𝜇 𝜇̂𝑈

†
𝜇,𝑥+𝑎𝜈 𝜈̂

𝑈†
𝜈,𝑥 = 𝑒𝑖𝑎𝜇𝑎𝜈 𝐹̃𝜇𝜈,𝑥 + O(𝑎2), (1)

𝐹̃𝜇𝜈 = ΔF
𝜇𝐴𝜈,𝑥 − ΔF

𝜈𝐴𝜇,𝑥 + 𝑖[𝐴𝜇,𝑥 , 𝐴𝜈,𝑥], (2)

which corresponds to a forward finite difference approximation ΔF
𝜇𝜙(𝑥) = (𝜙(𝑥 + 𝑎𝜇 𝜇̂) − 𝜙(𝑥))/𝑎𝜇

of the field strength tensor. The associated Gauss law turns out to be described by a backward finite
difference (BFD) operator. The limitations of such a BFD discretization are already visible on the
level of classical electrodynamics. Inspired by [6] I discussed in [7] two relevant Abelian model
systems: a capacitor with a finite charge density on its plates, as well the as a charge-anticharge
pair. Prescribing the true values of the electric field on the boundary plates, the BFD discretization
Δ𝐵 ·E = 0 manages to sustain field strength in the interior of the capacitor only close to the backward
boundary. As shown on the left of fig. 1 the field values on the forward facing plate are invisible to
the BFD operator. When solving Gauss’ law in the presence of a charge anticharge pair (right panel
of fig. 1) and computing the field lines in a gauge invariant fashion by diagonalizing the stress tensor
(blue arrows), one sees that they show a significant imbalance towards the backward direction.

The gauge actions deployed in the lattice QCD community today are improved, in the sense
of the Szymanzik program [8]. To accelerate the approach to the continuum limit, i.e. to reduce
discretization artifacts in the simulated correlators, the plaquettes of the Wilson action are amended
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Figure 1: (left) field lines from solving Gauss’ law in the interior of a capacitor for prescribed values of the
true electric field on the boundary (plates). Due to the backward finite difference prescription, field strength
is only sustained close to the backward boundary. (right) The field lines arising from solving the BFD Gauss
law in the presence of a charge anticharge pair described by point sources (true solution in light red).
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Figure 2: (left) Renormalized sum of the spatial and temporal 𝑃2×2 plaquettes that enter the computation of
the trace anomaly in simulations with 𝑆2×2. (right) Values of the trace anomaly from naively implemented
𝑆2×2, which is larger than the correct value by a factor of 4 × 8 × 15.

by loops with larger than unit area. Most common correction terms are the forward rectangles.
And while these terms indeed reduce the lattice spacing dependence of the simulation they do not
realize a symmetric discretization of the field strength around charges. Recovering the Gauss law
in the continuum limit therefore becomes non-trivial.

To realize a genuine symmetric discretization scheme, I proposed in [7] to use instead the 2×2
plaquette centered around the nodes of the grid

𝑃2×2
𝜇𝜈,𝑥 =𝑈̄𝜇,𝑥−𝑎𝜇̂−𝑎𝜈̂𝑈̄𝜇,𝑥−𝑎𝜈̂𝑈̄𝜈,𝑥+𝑎𝜇̂−𝑎𝜈̂𝑈̄𝜈,𝑥+𝑎𝜇̂𝑈̄

†
𝜇,𝑥+𝑎𝜈̂𝑈̄

†
𝜇,𝑥−𝑎𝜇̂+𝑎𝜈̂𝑈̄

†
𝜈,𝑥−𝑎𝜇̂𝑈̄

†
𝜈,𝑥−𝑎𝜇̂−𝑎𝜈̂

=exp
[
4𝑖𝑔𝑎𝜇𝑎𝜈 𝐹̄𝜇𝜈,𝑥

]
+ O(𝑎3), 𝐹̄𝜇𝜈,𝑥 = 𝚫C

𝜇𝐴𝜈,𝑥 − 𝚫C
𝜈 𝐴𝜇,𝑥 + 𝑖[𝐴𝜇,𝑥 , 𝐴𝜈,𝑥]

which realizes a central finite difference discretization ΔC
𝜇𝜙(𝑥) = (𝜙(𝑥+𝑎𝜇 𝜇̂) −𝜙(𝑥−𝑎𝜇 𝜇̂))/2𝑎𝜇 of

the field strength. This plaquette differs from the usual clover leaf prescription in that it corresponds
to the product of four 1× 1 plaquettes and thus remains within the gauge group (see also its relation
to stabilized Wilson fermions [9]).

First simulations [10] based on the action 𝑆2×2 =
∑

𝑥 𝑎𝑡𝑎
3
𝑠

[
2

16𝑎2
𝑡 𝑎

2
𝑠

∑
𝑖 ReTr

[
1 − 𝑃2×2

0𝑖,𝑥
]
−

1
16𝑎4

𝑠

∑
𝑖 𝑗 ReTr

[
1−𝑃2×2

𝑖 𝑗 ,𝑥

] ]
however revealed (see fig. 2) that such a symmetric discretization scheme

for gauge fields suffers from bosonic doublers, similar to the ones encountered when using symmet-
ric finite differences in the discretization of fermion fields. I.e. the values of the trace anomaly in
the right panel of fig. 2 are larger than the correct result by a factor of 4×8×15 (c.f. [11]), indicating
that for each physical mode, fifteen unphysical degrees of freedom propagate in the interior.

2. Regularization with boundary data

Let us illustrate the doubling problem in coordinate space in one dimension, using the following
finite difference operator 𝐷𝐶 with symmetric stencil in the interior

𝐷C =
1
Δ𝑥


−1 1 0 0
− 1

2 0 1
2 0

0 − 1
2 0 1

2
0 0 −1 1


, 𝐷̃ = 𝐷𝐶 + 𝜅

Δ𝑥

2Δ𝑥2


. . . 1 0 0
1 −2 1 0
0 1 −2 1

0 0 1 . . .


. (3)
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Figure 3: (left) The degenerate eigenfunctions associated with the zero eigenvalues of 𝐷𝐶 (blue circles) and
with its transpose (𝐷𝐶 )𝑡 (green triangles). (right) Eigenvalue spectrum of the operator 𝐷𝐶 with exact zero
modes (blue circles) and of the regularized operator 𝐷̃ (green triangles).

The operator 𝐷𝐶 is a so-called summation by parts operator, as it mimics accurately integration by
parts in the discrete setting. (see e.g. [12] and for the related discussion of the momentum operator
on finite domains see [13, 14]). If we compute its spectrum, we find that it features two zero
eigenvalues. They are associated with degenerate eigenfunctions that turn out to be the constant
function (blue circles in the left panel of fig. 3). The doublers are hiding in the eigenfunctions of the
transpose (𝐷𝐶)𝑡 and are indeed the maximally oscillating function on the grid also with eigenvalue
zero (green triangles).

In the numerical analysis literature several regularization approaches are discussed. One of
them, called the upwind modification (𝜅 = 1 in eq. (3) ), adds a symmetric second derivative to
𝐷𝐶 with one extra power of the grid spacing Δ𝑥. This term vanishes in the continuum limit and
does not affect the defining property of the finite difference, i.e. 𝐷̃x𝑟 = 𝑟x𝑟−1 for 𝑟 smaller than the
order of 𝐷𝐶 . At the same time this modification destroys the symmetry of the interior stencil and
reverts the derivative to the naive forward form. It was Wilson’s seminal contribution [5] to realize
that for complex valued fermionic fields the higher order derivative can be added with an imaginary
prefactor (𝜅 = 𝑖 in eq. (3)) which retains the symmetry of both terms while lifting the zero modes.
This is the celebrated Wilson term. In case of bosonic gauge fields, which must remain real-valued,
a similar modification however is not possible.

Taking inspiration from the computational fluid dynamics community, I propose to use another
lever to regularize the bosonic doubler problem: boundary values. In a finite system boundary
data are physical information and otherwise can be chosen at convenience. In the past, boundary
conditions were mostly implemented in the strong sense, i.e one replaces the degrees of freedom on
the boundary apriori with the prescribed values. Alternatively one may consider the weak treatment
of boundary conditions, which acknowledges that the boundary conditions only need to be realized
as accurately as the rest of the discretization. In turn one can introduce boundary information
through penalty terms, which offer new opportunities for regularization. This approach, known as
simultaneous approximation terms (SAT) [15] is well established in the treatment of classical ODEs
and PDEs [16].

Consider the continuum problem of solving the ODE 𝑢′(𝑥) = 𝑔(𝑥) with boundary condition

4
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𝑢(0) = 𝑢0. In discretized form it can be formulated as

𝐷u = g + 1
Δ𝑥

𝐸0
(
u − u0

)
→ 𝐷̃ = 𝐷 − 1

Δ𝑥
𝐸0 → 𝐷̃u = g − 1

Δ𝑥
𝐸0u0. (4)

where we use the notation u𝑘 = 𝑢(𝑘Δ𝑥) and introduce a penalty term that refers to the boundary
values via the projection matrix 𝐸0 = diag[1, 0, . . .] and u0 = {𝑢0, 0, . . .}. As the lattice spacing is
reduced the penalty increases and the boundary conditions will be more strictly fulfilled. The form
of the penalty term invites us to absorb its homogeneous part into a redefined difference operator
𝐷̃. In the right panel of fig. 3 we show the effect of this redefinition on the eigenvalues of the finite
difference operator. The blue points represent the eigenvalues of 𝐷, which feature two exact zeros
connected to the doubler mode. The green points on the other hand denote the eigenvalues of 𝐷̃
where all zero modes have been lifted. Thus 𝐷̃ is an invertible operator leading to a unique solution
of the system of equations for u in the right-most term in eq. (4).

On the lattice we need to incorporate this regularization in the action of the system. The
difficulty here lies in the fact that now we do not have an equal sign to move the penalty term around,
as we did in eq. (4). Together with J. Nordstöm, I recently proposed a solution by incorporating the
penalty term as a whole in the definition of the finite difference operator using affine coordinates.
Take as example the continuum action 𝑆 =

∫
𝑑𝑥𝑢′(𝑥)𝑢′(𝑥) with some boundary condition 𝑢(0) = 𝑢0.

Implementing the quadrature of the integral using a matrix (e.g. 𝐻 = Δ𝑥diag[ 1
2 , 1, . . . , 1,

1
2 ] for the

trapezoid rule) we can write 𝑆 ≈ (𝐷u)𝑡𝐻𝐷u. Our proposal is to define a new regularized finite
difference operator in which the boundary penalty term is included

𝐷̄u = 𝐷u + 𝐻−1𝐸0
(
u − u0

)
, 𝐷̄ =

1
Δ𝑥



−1 + 2 1 0 0 −2𝑢0

− 1
2 0 1

2 0 0
0 − 1

2 0 1
2 0

0 0 −1 1 0
0 0 0 0 1


. (5)

The last term involving u0 is nothing but a shift, which can be conveniently included in matrix
form when amending the matrix of 𝐷̄ by one row and one column, placing the value one in the
lower right corner and filling the extra column on the right with the values of the shift (see term
on the right in eq. (5)). For consistency all vectors corresponding to discretized functions are also
amended with one more entry of the value one ũ = {u, 1}. The absorption of the boundary term
into 𝐷̄ has a similar effect on its eigenvalues as we observed for the regularized 𝐷̃ previously. Both
zero modes are lifted. For 𝐷̄ expressed in affine coordinates we find that there exists a single purely
real eigenvalue of value one, while all others come in complex conjugate pairs. This eigenvalue is
now associated with the zero function u(0)

aff = {0, . . . , 0, 1} in the spectrum of 𝐷̄𝑡 , from which the
maximally oscillating doubler mode has been deleted.

The inclusion of boundary data as shown here, constitutes a novel regularization procedure for
symmetric discretization schemes. It is applicable also to purely real field degrees of freedom, in
contrast to the Wilson term, which requires complex valued functions.

3. Application to simple initial value problems

As a first application of the regularization procedure it has been used in [17] to develop a
novel discretization prescription for classical initial value problems (IVP), based on a variational

5
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Figure 4: Sketches of (left) the conventional boundary value formulation of the variational principle in
classical mechanics and (right) the variational principle adapted to initial value problems, which requires a
doubling of degrees of freedom.

principle. The long-term goal of this line of study is to realize genuine real-time simulations of
quantum fields on the lattice (see e.g. our work on complex Langevin [18] ). However as an
intermediate time goal I see the realization of gauge invariant simulations of the real-time dynamics
of classical lattice gauge theory. Today these simulations are based on Hamilton’s equations of
motion, which require a choice of gauge. The first modest step in this direction I am going to
discuss here is the development of a variational solver for initial value problems in classical point
mechanics. The challenge one faces with the construction of variational solvers for IVPs is the
fact that conventionally the variational problem is formulated as a boundary value problem (see
left panel of fig. 4). This is unsatisfactory, as the position of the system at final time 𝑡2 needs to
be provided apriori, an information that is not available in a genuine IVP. As was shown in [19]
a variational principle can be established when introducing a doubling of the degrees of freedom,
leading in essence to a double shooting method. In essence [19] discusses the classical limit of
the Schwinger-Keldysh real-time contour prescription, where in addition to degrees of freedom on
the forward branch 𝑥1 also 𝑥2 on a backward time branch are considers. The latter are assigned a
negative weight in the system action.

SIVP [𝑥1(𝑡), ¤𝑥1(𝑡), 𝑥2(𝑡), ¤𝑥2(𝑡)] =
∫ 𝑡2

𝑡1

𝑑𝑡

(
L[𝑥1(𝑡), ¤𝑥1(𝑡)] − L[𝑥2(𝑡), ¤𝑥2(𝑡)]

)
, (6)

=

∫ 𝑡2

𝑡1

𝑑𝑡

(
L[𝑥1(𝑡), ¤𝑥1(𝑡), 𝑥2(𝑡), ¤𝑥2(𝑡)]

)
. (7)

Let us introduce the coordinates 𝑥+ = (𝑥1 + 𝑥2)/2 and 𝑥− = 𝑥1 − 𝑥2, so that the variation of the
system action can be expressed in the form

𝛿S =

∫
𝑑𝑡

({ 𝜕L
𝜕𝑥1

− 𝑑

𝑑𝑡

𝜕L
𝜕 ¤𝑥1

}
𝛿𝑥1 −

{ 𝜕L
𝜕𝑥2

− 𝑑

𝑑𝑡

𝜕L
𝜕 ¤𝑥2

}
𝛿𝑥2

)
+
[ 𝜕L
𝜕 ¤𝑥1

𝛿𝑥1

] ����𝑡2
𝑡1

−
[ 𝜕L
𝜕 ¤𝑥2

𝛿𝑥2

] ����𝑡2
𝑡1

. (8)

Now if one enforces that the value of the paths and their derivatives agree at the final time step 𝑡2

one can show that the critical point of the action is equivalent to the solution of the Euler-Lagrange
equations. I.e. even though the value of the classical path at the final time step 𝑡2 is not fixed to a
certain value, the contributions from 𝑥1(𝑡2) and 𝑥2(𝑡2) are designed such that they cancel correctly
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the boundary terms arising there. The stationarity condition arising from this variational principle
is most concisely formulated as 𝛿𝑆IVP [𝑥± ]

𝛿𝑥−

���
𝑥−=0,𝑥+=𝑥class

= 0. The above derivation did not make any
reference to quantum field theory, but reassuringly reproduces the result of [20] where the classical
limit of the Schwinger-Keldysh formalism was investigated.

We set out to discretize and solve the variational principle for a simple IVP, the point particle in
a constant gravitational field with continuum action S =

∫
𝑑𝑡

(
1
2𝑚 ¤𝑥2(𝑡) − 𝑚𝑔𝑥(𝑡)

)
and arbitrarily

chosen initial conditions 𝑥(0) = 1 and ¤𝑥(0) = 0.3. According to eq. (7) we must double the degrees
of freedom, hence we introduce x1 and x2. The naive discretization of the action with quadrature
matrix 𝐻 and the naive SBP finite difference operator 𝐷𝐶 introduced in eq. (3) reads

SIVP =

{1
2
(𝐷𝐶x1)T𝐻 (𝐷𝐶x1) − 𝑔1T𝐻x1

}
−
{1
2
(𝐷𝐶x2)T𝐻 (𝐷𝐶x2) − 𝑔1T𝐻x2

}
(9)

+ 𝜆1(𝑥1(0) − 𝑥𝑖) + 𝜆2((𝐷𝐶x1) (0) − ¤𝑥𝑖) + 𝜆3(𝑥1(𝑁𝑡 ) − 𝑥2(𝑁𝑡 )) + 𝜆4((𝐷𝐶x1) (𝑁𝑡 ) − (𝐷𝐶x2) (𝑁𝑡 )).

In order to locate the critical point of the action under the constraints that initial conditions shall
be fulfilled and that the paths x1 and x2 shall agree at the last time point we have added four
Langrange multipliers 𝜆𝑖 . Using 𝑁𝑡 = 32 steps and a time extent of 𝑡2 = 1, we carry out a numerical
minimization of the expression in eq. (9) which leads to the result shown in the left panel of fig. 5.
We find that the obtained solution (crosses for x1, circles for x2) fulfills the requirement x1 = x2 of
the stationarity condition. One can however clearly see that only a subset of the solution lies on the
correct solution (gray solid line) and that a significant portion of the points on the paths form an
artificial oscillatory pattern. From our investigation of the spectrum of 𝐷𝐶 this is not surprising, as
the maximally oscillating zero mode, the doubler, has simply contaminated the result.

If instead we use the finite difference operator 𝐷̄ in affine coordinates, which is regularized
using the initial value data, together with the corresponding paths x̄1,2 and quadrature matrix 𝐻̄ in
affine coordinates, we end up with the following expression

Sreg
IVP =

{1
2
(𝐷̄x̄1)T𝐻̄ (𝐷̄x̄1) − 𝑔1T𝐻x1

}
−
{1
2
(𝐷̄x̄2)T𝐻̄ (𝐷̄x̄2) − 𝑔1T𝐻x2

}
(10)

+ 𝜆1(𝑥1(0) − 𝑥𝑖) + 𝜆2((𝐷𝐶x1) (0) − ¤𝑥𝑖) + 𝜆3(𝑥1(𝑁𝑡 ) − 𝑥2(𝑁𝑡 )) + 𝜆4((𝐷𝐶x1) (𝑁𝑡 ) − (𝐷𝐶x2) (𝑁𝑡 )).

whose critical trajectory is shown on the right of fig. 5. The regularization has successfully avoided
the occurrence of doublers and manages to bring the solution close to the correct classical trajectory.
Of course the accuracy of the solution is limited by the accuracy of the discretization used for the
finite difference operator 𝐷̄. Systematic prescriptions for the construction of higher order SBP
operators exist and the regularization in affine coordinates is independent of the form of 𝐷, i.e. it
can be applied straight forwardly to higher order operators too. We have checked that the classical
trajectory found via this variational approach correctly approaches the continuum limit under grid
refinement (for a detailed analysis see [17]).

4. Conclusion

The physics of strongly correlated fields in finite systems and in the presence of explicit sources
requires discretization schemes in the absence of translation invariance. A proposal to deploy the
centrally symmetric 2× 2 plaquette revealed the occurrence of bosonic doublers in such symmetric

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
8
5

Towards symmetric discretization schemes Alexander Rothkopf

0.2 0.4 0.6 0.8 1.0
t

0.2

0.4

0.6

1.0

x(t)

0.2 0.4 0.6 0.8 1.0
t

0.85

0.90

0.95

1.00

1.05
x(t)

Figure 5: (left) Solution of the IVP of eq. (9) with a naive SBP operator which suffers from the occurrence
of doublers. (right) Solution of the IVP of eq. (10) with the regularized SBP operator in affine coordinates
which avoids doublers. Note that the solutions for x1 (crosses) and x2 (circles) agree as required by the
stationarity condition.

discretization schemes. The challenge lies in the fact that the Wilson term regularization, successful
for complex valued fermion fields is not applicable for real-valued gauge fields. Instead I propose
to use the weak imposition of boundary data as an alternative regularization mechanism, which can
be straight forwardly implemented when expressing finite difference operators in affine coordinates.
As a first step, the efficacy of this type of regularization has been demonstrated in a variational
solver for classical initial value problems. While unregularized finite difference operators lead
to solutions for the classical trajectory that are contaminated by doubler modes, the regularized
operator successfully avoids the occurrence of the bosonic doublers. Extension of the variational
approach to higher dimensions is work in progress.

5. Acknowledgments

A.R. is supported by the Research Council of Norway under the FRIPRO Young Research
Talent grant 286883.

References

[1] C. Shen and L. Yan, Nucl. Sci. Tech. 31, 122 (2020), arXiv:2010.12377 [nucl-th] .

[2] A. Frisk Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Nature Reviews
Physics 1, 19 (2019).

[3] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, and E. Solano, Reviews of Modern Physics 91,
025005 (2019).

[4] A. Rothkopf, Phys. Rept. 858, 1 (2020), arXiv:1912.02253 [hep-ph] .

[5] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).

[6] R. Yanagihara, M. Kitazawa, M. Asakawa, and T. Hatsuda, Phys. Rev. D 102, 114522 (2020),
arXiv:2010.13465 [hep-lat] .

[7] A. Rothkopf, (2021), arXiv:2102.08616 [hep-lat] .

8

http://dx.doi.org/10.1007/s41365-020-00829-z
http://arxiv.org/abs/2010.12377
http://dx.doi.org/10.1016/j.physrep.2020.02.006
http://arxiv.org/abs/1912.02253
http://dx.doi.org/10.1103/PhysRevD.10.2445
http://dx.doi.org/10.1103/PhysRevD.102.114522
http://arxiv.org/abs/2010.13465
http://arxiv.org/abs/2102.08616


P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
8
5

Towards symmetric discretization schemes Alexander Rothkopf

[8] K. Symanzik, Nuclear Physics B 226, 187 (1983).

[9] A. S. Francis, F. Cuteri, P. Fritzsch, G. Pederiva, A. Rago, A. Schindler, A. Walker-Loud, and
S. Zafeiropoulos, PoS LATTICE2021, 118 (2022), arXiv:2201.03874 [hep-lat] .

[10] W. Horowitz and A. Rothkopf, SciPost Phys. Proc. 10, 025 (2022), arXiv:2109.01422 [hep-ph]
.

[11] T. Umeda, S. Ejiri, S. Aoki, T. Hatsuda, K. Kanaya, Y. Maezawa, H. Ohno, W.-Q. Collabora-
tion, et al., Physical review D 79, 051501 (2009).

[12] D. C. D. R. Fernández, J. E. Hicken, and D. W. Zingg, Computers & Fluids 95, 171 (2014).

[13] M. H. Al-Hashimi and U. J. Wiese, Phys. Rev. Res. 3, L042008 (2021).

[14] I. Albrecht, J. Herrmann, A. Mariani, U. J. Wiese, and V. Wyss, (2022), arXiv:2206.07531
[quant-ph] .

[15] M. H. Carpenter, D. Gottlieb, and S. Abarbanel, Journal of Computational Physics 111, 220
(1994).

[16] T. Lundquist and J. Nordström, Journal of Computational Physics 270, 86 (2014).

[17] A. Rothkopf and J. Nordström, (2022), arXiv:2205.14028 [math.NA] .

[18] D. Alvestad, R. Larsen, and A. Rothkopf, JHEP 08, 138 (2021), arXiv:2105.02735 [hep-lat] .

[19] C. R. Galley, Physical Review Letters 110, 174301 (2013), publisher: American Physical
Society.

[20] J. Berges and T. Gasenzer, Physical Review A 76, 033604 (2007).

9

http://dx.doi.org/10.22323/1.396.0118
http://arxiv.org/abs/2201.03874
http://dx.doi.org/10.21468/SciPostPhysProc.10.025
http://arxiv.org/abs/2109.01422
http://dx.doi.org/10.1103/PhysRevResearch.3.L042008
http://arxiv.org/abs/2206.07531
http://arxiv.org/abs/2206.07531
http://arxiv.org/abs/2205.14028
http://dx.doi.org/10.1007/JHEP08(2021)138
http://arxiv.org/abs/2105.02735
http://dx.doi.org/10.1103/PhysRevLett.110.174301

	Motivation
	Regularization with boundary data
	Application to simple initial value problems
	Conclusion
	Acknowledgments

