Towards symmetric discretization schemes via weak boundary conditions
Pre-published on:
November 30, 2022
Published on:
April 06, 2023
Abstract
The Szymanzik improvement program for gauge theories is most commonly implemented using forward finite difference corrections to the Wilson action. Central symmetric schemes naively applied, suffer from a doubling of degrees of freedom, identical to the well known fermion doubling phenomenon. And while adding a complex Wilson term remedies the problem for fermions, it does not easily transfer to real-valued gauge fields. In this talk I report on recent progress in formulating symmetric discretization schemes for classical actions of simple one-dimensional problems. They avoid doubling by exploiting the weak imposition of initial/boundary conditions. Inspired by recent work in the field of numerical analysis of partial differential equations, I construct a regularized summation-by-parts finite difference operator using boundary data based on affine coordinates. Application to a classical initial value problems with second order derivatives are presented.
DOI: https://doi.org/10.22323/1.430.0385
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.