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The 3D Ising conformal field theory (CFT) describes different physical systems, such as uniaxial
magnets or fluids, at their critical points. In absence of an analytical solution for the 3D Ising
model, the scaling dimensions and operator product expansion (OPE) coefficients characterizing
this CFT must be determined numerically. The currently most-cited values for these quantities
have been obtained from the conformal bootstrap, while lattice calculations have so far only
produced reliable results for the scaling dimensions involved in calculating the critical exponents.
Using Quantum Finite Elements to investigate critical 𝜙4-theory on R × S2, we show in this work
that it is possible to extract scaling dimensions and OPE coefficients of the 3D Ising CFT by
fitting the lattice four-point function with expectations from the operator product expansion for
the radially quantized CFT and extrapolating to the continuum limit. This way, we have for the
first time been able to use Monte Carlo simulations to compute the central charge of the theory.
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1. Introduction

Despite its simplicity, the investigation of the 3D Ising model at criticality is of great relevance
as a plethora of phenomena in different areas of physics, from condensed matter to high energy
physics, are described by theories in the Ising universality class [1]. Without an analytical solution
for the 3D Ising model, the investigation of its critical point has been driven by approximate
methods over the last few decades (for an overview, see Ref. [1]). For a long time, the most precise
theoretical predictions for the critical exponents of the 3D Ising model were those obtained by
applying finite-size scaling arguments to results from Monte Carlo simulations carried out on finite
Euclidean lattices using spin-cluster algorithms [1]. In the last decade, however, another method
has drastically reduced the error bars: the numerical conformal bootstrap [2, 3]. The bootstrap
imposes crossing symmetry on four-point functions and uses the conformal symmetry of the theory
describing the critical 3D Ising model - the 3D Ising Conformal Field Theory (CFT) - to identify
bounds on the CFT data. Under the hypothesis that the central charge of the 3D Ising CFT should
be minimized (c-minimization), the bootstrap achieved extremely precise predictions for scaling
dimensions and OPE coefficients of primary operators of this CFT [2–4]. The scaling dimensions
for some primaries like 𝜎 and 𝜖 are directly related to the critical exponents for physical quantities
in the Ising model [2] that are also well-known from lattice calculations, while the OPE coefficients
are extremely hard to compute with usual Monte Carlo methods. However, despite c-minimization
being well-motivated, it is an unproven hypothesis, and it is extremely difficult to estimate the
systematic error it may introduce to the bootstrap results.

In Refs. [5, 6], a new approach to investigate the 3D Ising CFT was introduced. Adding
perturbative counterterms, the so-called Quantum Finite Elements (QFE), to the lattice action and
tuning to the critical surface, Brower et al. succeeded at quantizing 𝜙4-theory on a series of
simplicial lattices approximating R × S2 such that the 3D Ising CFT was reached in the continuum
limit. After their investigation of the 2-point function of the 0−-operator 𝜎 yielded a value for its
scaling dimension that compared favorably with the bootstrap result, the present work is intended as
a proof of concept to show that using QFE, it is possible to gain information on the Z2-even sector
of the 3D Ising CFT, including the OPE coefficients and the central charge, from lattice calculations
of the scalar four-point function on R × S2. The central charge is especially interesting to compute
due to both its physical relevance [7, 8] and its role in the bootstrap’s c-minimization hypothesis.

This work is structured as follows: In Sec. 2, we discuss the critical Ising model from the
conformal field theory point of view and derive a partial wave expansion for the four-point function
in a special antipodal frame on R × S2; Sec. 3 is intended as a reminder of the QFE method, which
we employ to carry out lattice calculations of critical 𝜙4-theory on lattices approaching R × S2; in
Sec. 4, we illustrate our data collection and fitting process; finally, we present our results in Sec. 5.

2. The scalar four-point function in the 3D Ising CFT

At its critical temperature 𝑇 = 𝑇𝐶 and in the continuum limit, the 3D Ising model can be
described by a conformal field theory, the 3D Ising CFT. CFTs are quantum field theories that are
invariant under the conformal group of all angle-preserving space-time transformations [7]. The
local operator content of a CFT is spanned by the so-called primary operators, which have special
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transformation properties under the conformal group, and their descendants, created by acting on
primaries with translation generators. Because operator product expansions (OPEs) are exact for
CFTs, the invariant four-point function amplitude 𝑔 for identical scalar primaries can be written as
a series expansion in all primary operators O [9, 10]:

𝑔(𝑢, 𝑣) ≡ ⟨𝜙(𝑥1)𝜙(𝑥2)𝜙(𝑥3)𝜙(𝑥4)⟩
⟨𝜙(𝑥1)𝜙(𝑥2)⟩⟨𝜙(𝑥3)𝜙(𝑥4)⟩

= 1 +
∑︁
O

𝑓 2
𝜙𝜙O𝐺O (ΔO; 𝑢, 𝑣), (1)

where 𝐺O are the so-called conformal blocks, functions of the scaling dimension ΔO of a given O
and the standard conformally invariant cross ratios 𝑢 and 𝑣. The factors 𝑓O𝑖O 𝑗O𝑘

are called OPE
coefficients and can be interpreted as coupling constants in 3-point interactions of primaries. The
quantities ΔO and 𝑓O𝑖O 𝑗O𝑘

for all primaries fully characterize all n-point functions of a CFT.
The conformal blocks 𝐺O have no known analytic expression in odd dimensions 𝑑 [9].

However, as a function of the conformal invariants 𝜏 and 𝛼 with cosh(𝜏) = (1 +
√
𝑣)/

√
𝑢 and

cos(𝛼) = (1 −
√
𝑣)/

√
𝑢, they can be expanded in the Gegenbauer polynomials 𝐶𝑑/2−1

𝑗
[11]

𝐺O (ΔO; 𝜏, 𝛼) =
∑︁

𝑛∈2N0

𝑒−(ΔO+𝑛)𝜏
∑︁
𝑗

𝐵𝑛, 𝑗 (ΔO)𝐶𝑑/2−1
𝑗

(cos𝛼). (2)

Here, the second sum is carried out over 𝑗 ∈ {max(0, 𝑙 − 𝑛), ..., 𝑙 + 𝑛}, where 𝑙 is the spin of the
primary O, and the 𝐵𝑛, 𝑗 can be calculated recursively as detailed in Ref. [12].

2.1 The antipodal four-point function for the 3D Ising CFT in radial quantization

In our 𝑑 = 3 case, we can now transform from R3 to R × S2, defining 𝑡 = log 𝑟:

𝑑𝑠2
𝑓 𝑙𝑎𝑡 = 𝑟2 [𝑑𝑡2 + 𝑑Ω2

𝑑−1
] Weyl
−−−→ 𝑑𝑠2

𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 = 𝑑𝑡2 + 𝑑Ω2
𝑑−1 =

1
𝑟2 𝑑𝑠

2
𝑓 𝑙𝑎𝑡 . (3)

This choice of coordinates is known as radial quantization. Because for a CFT, n-point functions
transform as ⟨𝜙(𝑥1)...𝜙(𝑥𝑛)⟩ 𝑓 𝑙𝑎𝑡 = ⟨𝜙(𝑥1)...𝜙(𝑥𝑛)⟩𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟/(𝑟2

1 ...𝑟
2
𝑛) under this Weyl rescaling,

Eq. (1) stays invariant. If we consider a special antipodal frame on R × S2 in which the points
𝑥𝑖 = (𝑡𝑖 , 𝒏𝒊), 𝑖 ∈ {1, 2, 3, 4} lie pairwise at cylinder-time coordinates 𝑡1 = 𝑡2 and 𝑡3 = 𝑡4 and the
points at the same timeslice are located on opposite sides of the sphere (see Fig. 1a), the time
separation 𝑡 = |𝑡1 − 𝑡3 | and the angle 𝜃 with cos(𝜃) = 𝒏1 · 𝒏3 are mapped to the conformal invariants
cos(𝜃) = cos(𝛼) and cosh(𝑡) = cosh(𝜏) [6]. Thus, Eq.(2) implies in this antipodal frame:

𝑔(𝑡, 𝜃) = 1 +
∑︁
O

𝑓 2
𝜙𝜙O

∑︁
𝑛∈2N0

𝑒−(ΔO+𝑛)𝑡
∑︁
𝑗

𝐵𝑛, 𝑗 (ΔO)𝑃 𝑗 (cos 𝜃). (4)

The normalization of the coefficients 𝐵𝑛, 𝑗 (ΔO) in 𝑑 = 3 dimensions is fixed to 𝐵0, 𝑗 (ΔO) =

4ΔO 𝑙!
(1/2)𝑙 𝛿 𝑗 ,𝑙 where ()𝑙 is the Pochhammer symbol. To calculate the 𝐵𝑛, 𝑗 (ΔO) for arbitrary (𝑛, 𝑗),

we used the Mathematica Notebook provided with Ref. [12]. Because we are considering identical
operators in a frame with symmetry under 𝜃 → −𝜃 at each timeslice, only O with even spin and
parity will have non-zero contributions to Eq. (4).

It is convenient to rewrite 𝑔(𝑡, 𝜃) into a form that highlights that it is a partial wave expansion:

𝑔(𝑡, 𝜃) =
∑︁
𝑗∈2N0

𝑐 𝑗 (𝑡)𝑃 𝑗 (cos 𝜃). (5)
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(a) Antipodal frame on R × S2 in which we calculate
the four-point function.

(b) Illustration of the 𝑠-th level refinement of the icosahe-
dron, here for 𝑠 = 3. The resulting lattice is icosahedrally
symmetric and has 𝑁 = 2 + 10𝑠2 sites. [6]

Figure 1: Illustration of the antipodal frame on R × S2 and the lattice construction.

The coefficients 𝑐 𝑗 (𝑡) can be read off Eq. (4) and are made up of infinitely many terms involving all
primaries with even spin 𝑙 and even parity, with the leading contribution from each spin-𝑙 operator
O to 𝑐 𝑗 proportional to 𝑒−(Δ𝑂+| 𝑗−𝑙 | )𝑡 . For example, the leading terms contributing to 𝑐2 are:

𝑐2(𝑡) = 𝑓 2
𝜙𝜙𝑇𝐵0,2(Δ𝑇 )𝑒−Δ𝑇 𝑡 + 𝑓 2

𝜙𝜙𝜖 𝑒
−(Δ𝜖 +2)𝑡

(
𝐵2,2(Δ𝜖 ) + 𝐵4,2(Δ𝜖 )𝑒−2𝑡 + ...

)
(6)

+ 𝑓 2
𝜙𝜙𝑇 ′𝑒

−Δ𝑇′ 𝑡
(
𝐵0,2(Δ𝑇 ′) + 𝐵2,2(Δ𝑇 ′)𝑒−2𝑡 + 𝐵4,2(Δ𝑇 ′)𝑒−4𝑡 + ...

)
+ 𝑓 2

𝜙𝜙𝜖 ′𝑒
−(Δ𝜖 ′+2)𝑡

(
𝐵2,2(Δ𝜖 ′) + 𝐵4,2(Δ𝜖 ′)𝑒−2𝑡 + ...

)
+ ...

Here, we have explicitly included the four even-spin and -parity operators of the 3D Ising CFT with
the lowest leading exponentials Δ𝑂 + | 𝑗 − 𝑙 | for 𝑗 = 0, 2, which are 𝜖, 𝜖 ′ (0+) and 𝑇,𝑇 ′ (2+).

The OPE coefficient appearing in the contribution of the energy-momentum tensor 𝑇 to the
four-point function is related to the central charge 𝐶𝑇 of the 3D Ising CFT via [10]

𝑓 2
𝜙𝜙𝑇 =

Δ2
𝜙
Δ2
𝑇

16𝐶𝑇

. (7)

3. Critical 𝜙4-theory on R × S2 with Quantum Finite Elements

In Refs. [5, 6], Brower et al. developed Quantum Finite Elements (QFE) as a quantum
extension of the classical finite element method. Using QFE, they were able to carry out Monte
Carlo calculations of 𝜙4-theory, a theory in the Ising universality class, on a series of simplicial
lattices approaching R × S2, tuned to the critical surface such that the 3D Ising CFT was recovered
in the continuum limit [6]. In the following, we will recapitulate the key points of QFE. The reader
is referred to Refs. [5, 6] for details.

To approximate S2 with constant radius 𝑅, a series of simplicial lattices is constructed by
subdividing the edges into 𝑠 pieces and projecting the resulting vertices onto the sphere (see
Fig. 1b). The lattice action is then obtained by discretizing the classical 𝜙4-action using the discrete
exterior calculus implementation of the finite element method on this simplicial complex and its
Voronoï dual, as well as introducing perturbative counterterms (second line in Eq. (8)), the so-called
Quantum Finite Elements, that cancel the UV defects introduced by the position-dependent finite

4
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element weights 𝑙𝑥𝑦/𝑙∗𝑥𝑦 and √
𝑔𝑥 in the classical lattice action [6]:

𝑆 =
1
2


∑︁
⟨𝑥,𝑦⟩

𝑙∗𝑥𝑦

𝑙𝑥𝑦

(
𝜙𝑡 ,𝑥 − 𝜙𝑡 ,𝑦

)2 + 𝑎2

4𝑅2
√
𝑔𝑥𝜙

2
𝑡 ,𝑥 +

√
𝑔𝑥

[
𝑎2

𝑎2
𝑡

(
𝜙𝑡 ,𝑥 − 𝜙𝑡+1,𝑥

)2 + 𝑚2
0𝜙

2
𝑡 ,𝑥 + 𝜆0𝜙

4
𝑡 ,𝑥

]
−
∑︁
𝑡 ,𝑥

√
𝑔𝑥

[
6𝜆0𝛿𝐺𝑥 − 24𝜆2

0𝛿𝐺
(3)
𝑥

]
𝜙2
𝑡 ,𝑥 . (8)

Here, 𝑎 is the average lattice spacing on the sphere, related to the radius via 𝑎2/𝑅2 = 8𝜋√
3𝑁

, and 𝑎𝑡

is the lattice spacing along R. While the bare speed of light 𝑎/𝑎𝑡 is set to one, it is renormalized by
interactions. The terms 𝛿𝐺𝑥 and 𝛿𝐺

(3)
𝑥 appearing in the counterterms are calculated numerically

from the free lattice propagator 𝐺𝑡 ,𝑥;𝑡 ′ ,𝑦 via

𝛿𝐺𝑥 ≡ 𝐺𝑡 ,𝑥;𝑡 ,𝑥 −
1
𝑁

𝑁∑︁
𝑥′=1

√
𝑔𝑥′𝐺𝑡 ,𝑥′;𝑡 ,𝑥′ ; 𝛿𝐺

(3)
𝑥 ≡

∑︁
𝑡 ′ ,𝑦

√
𝑔𝑦

[
𝐺3

𝑡 ,𝑥;𝑡 ′ ,𝑦 −
1
𝑁

𝑁∑︁
𝑥′=1

√
𝑔𝑥′𝐺

3
𝑡 ,𝑥′;𝑡 ′ ,𝑦

]
.

(9)

The dimensionless parameters in this action were tuned to the critical surface by studying the Binder
cumulant for fixed 𝜆0 = 0.2, finding 𝑚2

0 = −𝜇2
0 = −0.27018(4) as the critical mass [6]. In the

following, we will fix the bare parameters to these values for our analysis.

4. Measuring and fitting the lattice four-point function data

In the present work, we used the QFE method to measure the amplitude 𝑔(𝑡, 𝜃) (Eq. (1)) in the
antipodal frame introduced in Sec. 2 for the fields 𝜙 of 𝜙4-theory tuned to the critical surface. We
then projected this amplitude onto Legendre polynomials to access its expansion coefficients 𝑐 𝑗 (𝑡)
(see Eq. (5)). From fits to these coefficients at different lattice spacings, we subsequently extracted
values for the scaling dimensions and OPE coefficients for primary operators of the 3D Ising CFT.
Finally, we performed first extrapolations of these lattice results to the continuum limit 𝑎/𝑅 → 0.

The simulations were carried out with the Tamayo-Brower cluster algorithm [13] combined with
Metropolis and overrelaxation at lattice refinements 𝑠 ∈ {24, 28, 32, 36, 40, 44, 48, 56, 64}, with
O(8000) independent simulations for 𝑠 = 24, O(1600) for 𝑠 = 28-48 and O(800) for 𝑠 = 56, 64. In
the flat direction of our manifold, we used 𝑁𝑡 = 16𝑠 timesteps and periodic boundary conditions.
Fig. 2a shows the results for the first ten non-zero coefficients calculated at 𝑠 = 64 up to maximal
times 𝑡 𝑗𝑚𝑎𝑥 chosen such that the relative statistical error of the effective mass never exceeds 50%.1

We note that the properties of the four-point function discussed in Sec. 2 and especially the
OPE (Eq. (4)) are only true for CFTs, while our finite lattice spacing breaks conformal symmetry.
However, because this symmetry is restored for 𝑎/𝑅 → 0, we still fit the 𝑐 𝑗 (𝑡) with the expectation
from the OPE using fit functions like Eq. (6) and assume that for small 𝑎/𝑅, the effect of symmetry
breaking can be absorbed into 𝑎/𝑅-dependent corrections of the parameters ΔO and 𝑓𝜙𝜙O that
vanish as 𝑎/𝑅 → 0. To be able to insert 𝑡 given in units of 𝑎𝑡 into the continuum fit functions,
we have to include the factor 𝑎𝑡/𝑅 = 𝑎/(𝑅𝑐𝑅) with the renormalized speed of light 𝑐𝑅 = 𝑎/𝑎𝑡 in

1Compared to the data showed at the conference, the statistics for 𝑠 =32-48 have been doubled, 𝑠 = 28 has been added
and the criterion for the maximal timeslices has been chosen more conservatively and consistently among the different 𝑠.
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Figure 2: Lattice data for 𝑠 = 64. (a) Partial wave expansion coefficients 𝑐 𝑗 (𝑡) for 𝑗 ∈ 2N, 𝑗 ≤ 20,
normalized by 𝑐 𝑗 (1). The error bars show the statistical error from averaging over independent Monte Carlo
runs. (b) Lattice data for 𝑐2 (𝑡) compared to continuum predictions based on Eq. (6), including different
primaries O and 𝑛𝑚𝑎𝑥

O . The theoretical curves are not fits but use values determined by the (lightcone)
bootstrap [2–4] for ΔO and 𝑓𝜙𝜙O . As we compare lattice data with the continuum theory, we do not expect
perfect agreement.

the exponents, where 𝑐𝑅 = 0.996 as determined in Ref. [6]. Moreover, because of our periodic
boundary conditions, we have to add 𝑒−ΔO (𝑁𝑡−𝑡 )𝑎𝑡/𝑅 for each 𝑒−ΔO 𝑡𝑎𝑡/𝑅 in our fit functions for 𝑐 𝑗 .

In the present work, we focus on extracting CFT data for 0+- and 2+-operators from fits to 𝑐0

and 𝑐2. The big advantage of performing fits based on the OPE compared to fitting unconstrained
exponentials is that for each operator O, we only need to introduce two new parameters, ΔO and
𝑓𝜙𝜙O , to the fit functions for the 𝑐 𝑗 (𝑡), which then characterize entire blocks of (in principle)
infinitely many exponentials. As these parameters should be the same across all 𝑐 𝑗 , we perform
simultaneous fits to 𝑐0 and 𝑐2. The leading term in 𝑐0 corresponds to the contribution from the
primary 𝜖 , while the leading term for 𝑐2 comes from the energy-momentum tensor 𝑇 . Apart from
𝜖 and 𝑇 , we include the first subleading operators 𝜖 ′, 𝑇 ′ in our fits. Though Fig. 2b shows that their
inclusion does not change the fit functions much, their addition increases the model probability
calculated according to Ref. [14] and limits the excited state contamination of the fit parameters
corresponding to 𝜖 and 𝑇 . However, including even more subleading 𝑙 = 0 or 𝑙 = 2-operators led
to fit convergence issues. To minimize truncation errors, we used 𝑛 up to 𝑛𝑚𝑎𝑥

𝜖 = 20, 𝑛𝑚𝑎𝑥
𝜖 ′ = 18,

and 𝑛𝑚𝑎𝑥
𝑇 ′ = 16, chosen such that the highest exponents for the different operator contributions are

of the same order of magnitude. For the energy-momentum tensor, which does not contribute to 𝑐0,
we only included 𝑛𝑇 = 0 [5]. The resulting truncated OPE prediction for 𝑐2 that we use for fitting is
shown as the light blue curve in Fig. 2b, plotted using bootstrap values for the scaling dimensions
and OPE coefficients. When compared to our lattice data for 𝑠 = 64, a clear discrepancy can be
seen at low 𝑡, mainly caused by the truncation of contributions from subleading and operators and
higher 𝑛 to the function, while for larger 𝑡 this theoretical curve agrees reasonably with our data.
Similar observations can be made for 𝑐0.

For each lattice refinement, we performed simultaneous fits to 𝑐0 and 𝑐2 by least square
minimization using the L-BFGS-B optimization algorithm implemented in SciPy [15]. We fixed
(𝑡0𝑚𝑎𝑥 , 𝑡

2
𝑚𝑎𝑥) as explained above and carried out fits with all possible combinations of starting times

(𝑡𝑚𝑖𝑛
0 , 𝑡𝑚𝑖𝑛

2 ). As initial guesses for our fit parameters, we used the bootstrap results [3, 4]. For the
OPE coefficients, we used the values for 𝑓𝜎𝜎O because the local field operator 𝜙 has most overlap

6
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with the 0−-primary 𝜎, with contributions from other primaries going to zero for 𝑎/𝑅 → 0. For the
lowest values of 𝑠, the 𝑇-contribution in our fits was often wrongly attributed to the 𝜖 ′- or 𝑇 ′-terms
in the fit function, so we imposed the bounds Δ𝑇 ≥ 2.5, Δ𝜖 ′ ≥ 3, and Δ𝑇 ′ ≥ 3.5 to prevent this
kind of mix-up. To select reasonable starting times (𝑡𝑚𝑖𝑛

0 , 𝑡𝑚𝑖𝑛
2 ), we used the framework of model

averaging developed in Ref. [14]. After rejecting fits that were not able to constrain all parameters
or that converged on the bounds (for fits with reasonable model probability 𝑝(𝑀 |𝐷), the latter
only occurred in a few fits for the Δ𝜖 ′ parameter), we renormalized 𝑝(𝑀 |𝐷) and used all fits with
𝑝(𝑀 |𝐷) > 10−3 in the model averaging for which the determined (𝑡𝑚𝑖𝑛

0 , 𝑡𝑚𝑖𝑛
2 ) were close to the

tuple with maximal 𝑝(𝑀 |𝐷).

5. Fit Results

Despite our efforts to choose (𝑡𝑚𝑖𝑛
0 , 𝑡𝑚𝑖𝑛

2 ) optimally, we expect the fit results for the quantities
associated with the subleading operators 𝜖 ′ and 𝑇 ′ to still be significantly influenced by excited
states as our fits do not include operators with even higher scaling dimensions or higher spin. Thus,
we focus on our results for the leading operators 𝜖 and 𝑇 in the following. Fig. 3a-d shows our
final, model-averaged fit results for Δ𝜖 , 𝑓 2

𝜙𝜙𝜖
, Δ𝑇 , and 𝑓 2

𝜙𝜙𝑇
as functions of 𝑎/𝑅 compared to the

continuum bootstrap values from Refs. [2–4] plotted as blue dotted lines. Note that in the case
of Δ𝜖 , the bootstrap value is in agreement with countless Monte Carlo results [1], and for Δ𝑇 the
continuum value is fixed to be equal to the dimension of the theory. As we only expect our lattice
data to agree with the bootstrap in the continuum limit, the plots also show some fits extrapolating
our lattice values to 𝑎/𝑅 → 0. Because we have not performed a thorough finite-size scaling
analysis [16] yet, we do not know the functional dependence of our results on the lattice spacing.
For some first naive extrapolations, we performed linear fits, which can be viewed as the first term
in a Taylor series expansion of the true functional dependence. We extrapolated based on all data
points (green in Fig. 3) and based on only the data for lattice refinements 𝑠 ≥ 32 (orange). The
resulting extrapolated values at 𝑎/𝑅 = 0 for the different quantities can be read off the legends in
Fig. 3. We might want to exclude 𝑠 = 24, 28 in the extrapolations for two reasons: Firstly, for low
𝑠 (high 𝑎/𝑅), we might be too far from the continuum for the OPE-based fit functions to our data
for 𝑐0(𝑡) and 𝑐2(𝑡) to be reasonable. Secondly, the linear approximation of the extrapolation gets
worse the higher the values of 𝑎/𝑅 for which we include data points in the extrapolation fit.

Overall, Fig. 3 shows our lattice results to be close to the bootstrap values, and for the quantities
associated with operator 𝜖 , the lattice data has a clear trend towards these values as 𝑎/𝑅 → 0. For
the quantities associated with 𝑇 , the errorbars allow for a broad range of slopes, including constant
extrapolations, as𝑇 only appears in 𝑐2, which has significantly fewer timeslices of good data than 𝑐0

(see Fig. 2). Improving on the statistics could reduce these error bars and make the 𝑎/𝑅-dependence
of the lattice data more apparent.

As the relatively large error bars already make our lattice data forΔ𝑇 consistent withΔ(𝑡ℎ𝑒𝑜𝑟𝑦)
𝑇

=

3 (see Fig. 3b), also both linear extrapolations yield continuum values that agree with the theory
value within 2𝜎. For Δ𝜖 the naive linear extrapolation using all data points yields a continuum
value significantly lower than that obtained by the bootstrap (see Fig. 3a) , but when the 𝑠 = 24, 28
lattice values are excluded from the fit, there is agreement within 3𝜎. For 𝑓 2

𝜙𝜙𝜖
(see Fig. 3c),

the error bars are small enough that just by looking at the data, we can already conclude that our
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Figure 3: Lattice results for the scaling dimensions and OPE coefficients of the leading operators 𝜖 and 𝑇 as
well as the central charge a function of the lattice spacing, along with the continuum values obtained from
the numerical bootstrap (blue dotted line). First linear fits to extrapolate to 𝑎/𝑅 → 0 are shown in green for
fits to all data points and in orange for fits to only 𝑠 ≥ 32. For 𝑓 2

𝜙𝜙𝜖
, we also show fits including a quadratic

term (grey for fits to all data points, light blue for 𝑠 ≥ 32).

lattice results most certainly do not follow a simple linear curve. Therefore, it makes sense that
not even the linear fit with 𝑠 ≥ 32 yields an extrapolation result consistent with the bootstrap. We
tried including a quadratic term as the next order of a possible Taylor expansion, which moved
the extrapolation result closer to the bootstrap value. However, the high coefficient in front of the
𝑎2/𝑅2-term indicates that the expansion is not convergent for the high values of 𝑎/𝑅 at which we
have data points. This shows that we have to go to lower lattice spacings and, more importantly,
use the true 𝑎/𝑅-dependence from finite-size scaling as a basis for our extrapolation fits to obtain
reliable extrapolation results. In the case of 𝑓 2

𝜙𝜙𝑇
, the linear extrapolations also lead to continuum

extrapolations significantly higher than the bootstrap result. There even is a slight upwards trend
of the lattice results, away from the bootstrap expectation. Such a substantial deviation despite the
relatively large statistical errors of the lattice data for 𝑓 2

𝜙𝜙𝑇
gives us good reason to believe that

there also might be considerable systematic errors affecting our calculation, leading to significantly
too high values for the OPE coefficients. In the hope of cancelling such systematic errors as well as
certain 𝑎-dependencies, we show the ratio 𝑓 2

𝜙𝜙𝜖
/ 𝑓 2

𝜙𝜙𝑇
in Fig. 3e. For this ratio, linear extrapolations
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Fit dof Δ𝜖 𝑓 2
𝜙𝜙𝜖

Δ𝑇 𝑓 2
𝜙𝜙𝑇

𝑓 2
𝜙𝜙𝜖

/ 𝑓 2
𝜙𝜙𝑇

𝐶𝑇/𝐶 𝑓 𝑟𝑒𝑒

𝑇

linear all 𝑠 7 12.1 20.8 11.9 7.5 8.2 5.3
linear 𝑠 ≥ 32 5 6.3 8.0 9.2 7.3 7.5 3.5

Table 1: 𝜒2-values for the linear extrapolation fits.

both including and excluding 𝑠 = 24 and 𝑠 = 28 agree with the bootstrap result within 1𝜎.
Fig. 3f shows our lattice results for the central charge 𝐶𝑇 relative to 𝐶

𝑓 𝑟𝑒𝑒

𝑇
= 3/2 of the free

theory. To calculate𝐶𝑇 at different lattice spacings, we used Eq. (7) with our lattice results for 𝑓 2
𝜙𝜙𝑇

and Δ𝑇 , as well as Δ𝜙 = 0.518(2), which corresponds to the QFE result from Ref. [6]. Because our
values for 𝑓 2

𝜙𝜙𝑇
are significantly higher than the bootstrap value, our values for the central charge

are also lower than the bootstrap prediction. Due to the large error bars and the slight upward trend
of 𝐶𝑇/𝐶 𝑓 𝑟𝑒𝑒

𝑇
as 𝑎/𝑅 → 0, the linear fit excluding the largest two lattice spacings still extrapolates

to a value for the central charge that is consistent with the bootstrap within 2𝜎. However, possible
systematic errors affecting the OPE coefficients and scaling dimensions should also impact our
results for the central charge.

6. Discussion and future directions

The goal of the present work was to demonstrate that by fitting the lattice four-point function
calculated using the QFE method and subsequently extrapolating the lattice results to 𝑎/𝑅 → 0,
we can extract scaling dimensions and OPE coefficients as well as the central charge of the 3D
Ising CFT. In this proof of concept, we focused on quantities associated with the operator 𝜖 (0+)
and the energy-momentum tensor 𝑇 (2+). For these, we were especially able to obtain the OPE
coefficients 𝑓𝜎𝜎𝜖 and 𝑓𝜎𝜎𝑇 as well as the central charge, which has, to the authors’ knowledge, not
been achieved with Monte Carlo methods before. While for the scaling dimensions and the central
charge already linear extrapolations to the continuum are consistent with the bootstrap predictions,
this is not the case for the OPE coefficients. To make definite statements about whether or not
our continuum extrapolations agree with the bootstrap or even contradict their c-minimization
hypothesis, we have to improve our lattice data and extrapolations by using finite-size scaling based
extrapolation fit functions, performing simulations at even lower values of 𝑎, and improving the
statistics of our results. Even more importantly, we have to thoroughly examine and minimize
possible systematic errors of QFE and our fitting method.

The big advantage of our lattice calculations compared to the bootstrap, for which the error
introduced by the c-minimization hypothesis is hard to estimate, is that both statistical and systematic
errors can be systematically improved upon. One possible error source that we are currently
investigating is the tuning of our parameters to the critical surface, as even a slight mistuning of
𝜇2

0 could prohibit us from flowing to the critical theory in the continuum limit. Furthermore,
finite-coupling effects could appear because we do not take 𝜆0 → 0 as we go to the continuum.
To investigate and account for these possible errors, we are planning to redo the calculations with
𝜆0 → 0 as 𝑎/𝑅 → 0 and precise fine-tuning of the critical mass for every 𝜆0. To get a better
understanding of lattice artifacts of the four-point function, we are also currently doing lattice
calculations for the free theory on R×S2. Furthermore, we are investigating ways to put the radially
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quantized Ising model on a lattice that does not rely on perturbative counterterms. Another source of
systematic error goes hand in hand with increasing the statistics of our lattice data: Higher statistics,
resulting in a larger range of good timeslices for the 𝑐 𝑗 , would allow us to include higher-order
operators and also higher-spin coefficients 𝑐 𝑗 to our simultaneous fits, therefore reducing truncation
errors and excited state contamination of the coefficients for the leading terms.

After addressing all these issues, the proof of concept in the current work shows that we should
be able to obtain low errors - both statistical and systematic - for our lattice results from fitting the
𝑐 𝑗 . Combined with finite-size scaling based extrapolation fits, this should lead to precise continuum
predictions not only for the scaling dimensions and OPE coefficients corresponding to the leading
operators but also for subleading and higher-l operators, most of which have only been obtained with
the lightcone bootstrap so far. The only obstacle for such improvements is the computational cost.
Gathering the data for the current O(800) Monte Carlo runs for 𝑠 = 64 already took O(6 × 105)
core hours of computing time running on single cores on the BU shared computing cluster, and the
computing time grows ∝ 𝑠3. Thus, significant improvements in statistics and simulations at higher
𝑠 would require us to parallelize the code and run on a supercomputer.
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