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1. Introduction
It is well known that lattice quantum chromodynamics (LQCD) calculations are memory

bandwidth bound on modern computing architectures, this stemming from the low arithmetic
intensity of the discretized fermion operators (stencils) which are the computational dominant kernel
in most LQCD computations. Given that the expected future trajectory of computer architecture will
exacerbate the gap between computational throughput and memory bandwidth, we cannot expect
future supercomputers to remedy this situation.

In order to soften this bottleneck there have been a number of techniques deployed, both as
part of general HPC developments, and in a domain-specific approaches specifically for LQCD
computations.

• Cache blocking: the number of redundant loads can be minimized by utilizing a cache
tiling-strategy, where temporal locality is exorcised to reuse loads in on-chip cache [1, 2].

• Block solvers: by deploying a batched linear solver, where multiple right hand sides are
solved simultaneously, the memory traffic to load the stencil coefficients can be amortized.
This transformation effectively turns a matrix-vector problem, into a matrix-matrix problem,
increasing the arithmetic intensity as a result [3].

• Compression: LQCD is a theory that is blessed with many symmetries that can be harnessed
to reduce their memory footprint. In particular, the link-field matrices that appear in the Dirac
stencil are, depending on the smearing used, usually a member of the SU(3) group. This
allows one to reduce the real numbers required to exactly store each matrix from 18 to 12 or
as few as eight real numbers [4, 5].

• Mixed-precision Krylov solvers: using less precision to store fields means less time spent
loading / storing those field. The most commonly used approach is to use “double-single”
solvers, where the bulk of the work is done using IEEE 754 single precision, FP32, with
correction to IEEE 754 double precision, FP64, though “double-half” is also deployed,
particularly in the QUDA library (see §2).

In this work we focus on a new approach to tackle the memory bandwidth crunch: how to
improve precision at a fixed number of bits. In doing so we ask ourselves, what would the
optimum numerical format be for an LQCD-type problem? Almost all modern microprocessors
that are capable of floating point adopt the IEEE 754 convention, however there is no reason why
the IEEE formats are the optimum ones for LQCD data.

The fact that we are constrained to using IEEE floating point for the actual computation is not
an issue since we are free to decouple the computation format from the storage format, with the
expectation that any custom format would only be used for storage and we would convert to IEEE
format for the computation. Thus our Achilles heal of being bandwidth limited becomes a great
advantage: it provides us a computational budget to deal with potentially expensive unpacking and
packing at the beginning and end of any computation, respectively.

This paper is broken up as follows: in §2 we describe the IEEE numerical formats and briefly
introduce the pre-existing QUDA half-precision format that was a precursor to this work. In §3
we describe the stabilized mixed-precision CG and multi-shift CG solvers that QUDA utilizes, that
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have not been described in the literature prior. Our alternative numerical formats are described in
§4, and we describe the approach to implementing these formats in §5, as well as testing the efficacy
of our approach. In §6 we present initial solver results using these numerical formats. Finally in
§7 we summarize our findings, and we propose future research directions and applications of our
technique. In this work we present using HISQ staggered fermions, however, there is nothing tied
to the discretization employed, and our methods are equally applicable to Wilson fermions, etc.

2. IEEE and QUDA numerical formats

The IEEE floating point formats [6] are partitioned into a sign bit, mantissa, and exponent,
with the mantissa bits defining the precision of the representation, and the exponent bits setting the
possible range. In Table 1 we summarize the IEEE primary floating point formats.

exponent mantissa epsilon smallest largest
width width number number

half 5 10 2−11 ∼ 4.88 × 10−4 ∼ 6.10 × 10−5 65504
single 8 23 2−24 ∼ 5.96 × 10−8 ∼ 1.18 × 10−38 ∼ 3.40 × 1038

double 11 52 2−53 ∼ 1.11 × 10−16 ∼ 2.23 × 10−308 ∼ 1.80 × 10308

quad 15 112 2−113 ∼ 9.63 × 10−35 ∼ 3.36 × 10−4932 ∼ 1.19 × 104932

Table 1: IEEE 754 floating point formats, together some key properties

A few comments are in order regarding Table 1. The quantity epsilon is defined as being the
smallest number than can be added to unity, with the result being distinct from unity. Since floating
point errors are relative, this can be thought of as the relative error of a given floating point number.
On the largest and smallest numbers, we note that quantities evaluated on the lattice will typically
by O(1), with the smallest values typically being 1/𝜅, where 𝜅 here is the condition number of the
fermion matrix we are solving for (and not the Wilson mass parameter). Thus we can observe that it
is unlikely we need the huge range afforded by double precision, even if we may need the precision.

Similarly, we may also observe that both the precision and range of IEEE half precision (FP16)
are unlikely to be suitable for LQCD given that it would not be possible to represent the dynamic
range of a typical linear system to any desirable precision. It is this that motivates the "half precision"
format that is used by QUDA. This is essentially a fixed-point representation, where we utilize the
entire 16-bit effective word size for precision, and do not "waste" any bits for exponent bits. This
is a natural fit for the gauge fields, since these are elements of the special unitary group, and so
all values are guaranteed to be in the range [−1, 1].1 For the fermion fields, since these do not
have an a priori bound, we compute the site-local maximum absolute value and use this to set the
scale. Once being loaded in registers, the fields are converted into FP32 for computation. Hence
the format gives 16 bits of local precision, for an epsilon of 2−15 ∼ 3 × 10−5 while at the same
time giving a global dynamic range similar to IEEE single precision.2 Since LQCD computations
consists of applying (special) unitary rotations at the site level, a local fixed-point format is in some

1The interested reader may wonder what is done in the case of smeared gauge fields, where the matrix elements are
no longer necessary bounded as such. Here we simply compute the global max field element, and use this to set the scale.

2One may wonder why we only have precision of 2−15, as opposed to 2−16: this is because, unlike IEEE floating
point formats, we are using a signed integer twos-complement representation, with no separate sign bit.
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sense optimal. In Listing 1 we illustrate the structure of the half-precision format as deployed for a
staggered fermion in QUDA.

1 struct staggered_fermion_16 {

2 int16_t v[6];

3 float max;

4 };

Listing 1: QUDA half-precision format for a staggered fermion

To avoid any confusion, from now on whenever we refer to half precision, we are referring
to the QUDA half precision format and not IEEE half precision. Conversely, single and double
precision do refer to their usual IEEE formats.

3. Mixed-Precision Solvers

In prior work [5], we reported on an efficient mixed-precision BiCGStab method, where reliable
updates [7] were utilized to ensure that the iterative residual computed in the working, or sloppy,
precision (typically half or single) was periodically replaced with an explicitly computed residual
in the target precision (typically double).3 While the reliable-update mixed-precision method could
also be applied naively to CG with some limited success, this method was found to break down
as the fermion mass was decreased, e.g., condition number increases. Moreover, mixed-precision
methods have additional challenges when one is concerned with multi-shift solvers. Since the
solutions QUDA employs to both of these problems have not previously been reported in the
literature, we do so here.

3.1 Mixed-Precision Conjugate Gradient

An analysis of the breakdown of mixed-precision CG at small quark mass found the issues were
centred around a few key defects, which we now describe, together with their respective solution.

1. Accumulation of the partial solution vector in the sloppy precision leads to unnecessary
truncation of the solution vector. This can easily be remedied by always storing the solution
vector in high precision. For example, when using a double-half CG solver, while the iterated
residual and gradient vectors are kept in half precision, the solution vector is stored in double
precision. We can mitigate the additional memory traffic overhead from storing the solution
vector in high precision by buffering the gradient vectors, and only accumulating onto the
solution vector periodically.

2. While frequent correction of the residual vector with a reliable update cures the residual
drift, it does not prevent drift of the gradient vector. This means that the super-linear
acceleration factor of CG versus Steepest Descent is lost, and the iteration count increases.
This observation regarding the gradient vector drifting was noted in [9] with a cure being
given to re-project the gradient vector whenever the residual is corrected.

3How often the true residual should be computed is a free parameter. For this work here we use 𝛿 = 0.1, e.g., each
time the iterated residual drops by an order of magnitude we recompute the true residual. We are presently experimenting
with a more dynamic choice based on explicit error estimation which may prove optimal [8].
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3. The computation of 𝛽, the coefficient used to ensure the gradient vectors are A-orthogonal,
breaks down when the Krylov space is constructed in low precision. This has a similar effect
as 2.) above, in that the super-linear convergence of CG is lost. We stabilize the computation
of 𝛽 by adopting the Polak–Ribière formula from non-linear CG [10],

𝛽𝑘+1 =
𝑟
†
𝑘+1(𝑟𝑘+1 − 𝑟𝑘)

𝑟
†
𝑘
𝑟𝑘

.

Note that in infinite precision, the additional term on the numerator disappears since the
residual vectors will be orthogonal, however, in finite precision this additional term enhances
the local orthonormality.

In Figure 1 we plot the residual history of the QUDA CG solver when solving the staggered
operator at a relatively light fermion mass. Shown on the plot are the residual histories for a pure
double-precision solver, a naive double-half solver utilizing only reliable updates, and a double-half
solver utilizing the above three refinements. Dramatic improvement is evident, demonstrating that
these additions are critical to having a solver that converges at all. The periodic jumps in the residual
are indicative of a reliable update taking place where the residual is recomputed in double precision:
that these jumps are mild for the stabilized algorithm indicates that the residual drift is relatively
well bounded.

Figure 1: Convergence history of CG solver (𝑉 = 164, 𝛽 = 5.6, 𝑚 = 0.001).

3.2 Mixed-Precision Multi-shift Conjugate Gradient
Multi-shift solvers rely on the shifted residuals being co-linear to the unshifted base residual

throughout the convergence [11], and this proves troublesome when used in combination with mixed
precision. While reliable updates prevent drift of the unshifted residual, they do not prevent drift
of the shifted residuals. Thus over the course of the convergence, the shifted residuals will cease to
be co-linear with the unshifted residual, and the shifted systems convergence stalls, even while the
unshifted system retains its convergence.

We are chiefly concerned with multi-shift CG, owing to its importance as the primary solver
when using Rational Hybrid Monte Carlo (RHMC) [12]. Prior to this work, the optimal approach
employed in QUDA has been to run the multi-shift solver in double-single precision, employing
reliable updates on the unshifted system. As the iterated shifted residuals converge, or reach the
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limit of the sloppy precision, we cease updating them and the solver is terminated once all the shifted
systems are removed. At this point we then employ CG refinement, typically using double-half
precision, solving the unshifted system first, then refinement on the shifts. For the unshifted, we
preserve the gradient vector from the initial multi-shift solver, to retain the Krylov space generated
during the initial solve, and use a clean restart for the shifted systems. Compared to a pure double-
precision multi-shift solver, we typically achieve around a 1.5-2× time-to-solution improvement,
with the speedup being tempered by the additional iterations required due to the post-solve shifted
system refinement.

3.3 The need for more precision
Even with the techniques and strategies described above there are limits to how far one can

push limited precision that cannot be so easily circumvented.

• When the inverse of the condition number is smaller than the epsilon of the precision
employed, any linear solver will struggle since it will be unable to simultaneously represent
all eigenvalue scales to even a single significant digit.

• For solvers that require explicit orthogonalization, e.g., Arnoldi-based methods, the size of
Krylov space that can be constructed will be limited by the precision of the representation.

• As noted above, lack of precision in a mixed-precision multi-shift solve results in a loss of
co-linearity. Improving the sloppy precision could better retain co-linearity in multi-shift
solvers, reducing post-solve refinement required, in turn maximizing the benefit of using
mixed-precision solvers.

Thus we have motivation to consider how to improve the underlying precision of the represen-
tation, or to maximize the precision at constant bit width.

4. Bit Packing for Lattice QCD

The idea of bit packing to achieve a reduced footprint is not a new one. A recent work of
note in the realm of HPC is ZFP [13] which is a lossy compression library aimed at increasing the
precision per bit achievable by using a block storage format and utilizing the spatial coherence that
scientific data sets typically exhibit to achieve compression.

In the present case, let us reconsider the staggered fermion half precision format (Listing 1).
The primary value of the FP32 maximum component is the 8-bit exponent, as the 23 bits of mantissa
and 1 bit sign add no value relative to the other 16-bit components. A better approach is thus only
storing the exponent of the maximum value, and repurpose the remaining 24 bits to improve the
precision for all components. We sketch out such a storage format in Listing 2, where we note we
are abusing the C++ type naming convention here to illustrate our point (there are no such types as
int20_t or int30_t). With this alternative format we have improved the precision of the fermion
components from 16 bits to 20 bits without any increase in memory footprint, which should result
in an epsilon of around 2−19 ∼ 2 × 10−6.

1 struct staggered_fermion_20 {

2 int20_t v[6];

6
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3 uint8_t exponent;

4 };

Listing 2: 20-bit precision format for a staggered fermion

Let us now consider the conventional single-precision format, which for a staggered fermion
would consist of six FP32 numbers, or 192-bits. Here we again can use a shared exponent for
all components, and repurpose the saved bits for improving the effective precision. Listing 3 is a
realization of this, where we have improved the effective precision to 30 bits (from 24 bits), which
should result in an epsilon of around 2−29 ∼ 2 × 10−9.

1 struct staggered_fermion_30 {

2 int30_t v[6];

3 uint8_t exponent;

4 };

Listing 3: 30-bit precision format for a staggered fermion

Before we discuss implementation of these ideas and results, we note that the above two
example formats are just two of the many possible shared-exponent formats that can be constructed:
different solutions can be tailored as needs change. Regarding the gauge field: owing to its lack
of global dynamic range we need no such special consideration. To accompany the 20-bit fermion
we simply utilize the 16-bit raw integer format used for half precision and for the 30-bit format we
utilize a 32-bit fixed point format.

Finally we note that a computation involving fermions and gauge fields will require three
precisions to be fully specified, and that any one of these can be the precision limiter in a given
computation:

• The storage format of the gauge field, e.g., 16-bit, 32-bit, FP32

• The storage format of the fermion field, e.g., 20-bit, 30-bit, FP32

• The actual precision that the computation is done in, e.g., FP32, FP64

In the discussion below §5, we use the triplet shorthand of gauge precision / fermion precision /
computation precision, e.g., 16-bit / 16-bit / FP32 is the conventional QUDA half precision format,
and 16-bit / 20-bit / FP32 would be the new format using 20-bit fermions.

5. Implementation and Testing
5.1 Implementation

While the ideas sketched out in the prior section are easy enough to describe, the fact that
there are no native 20-bit and 30-bit integer types in C++ may suggest that implementing such a
format in an application framework such as QUDA would be onerous, involving a lot of manual bit
masking and shifting. Fortunately, we can utilize bit fields [14] to easily address arbitrary subsets
of 32-bit words, effectively allowing for arbitrary precision types. The notable exception here is in
the case where we are required to partition a given 𝑛-bit number between multiple (32-bit) words.
For the interested reader, in Appendix A we have included an example code listing which performs
the packing and unpacking of a staggered 20-bit fermion vector.

7
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By virtue of the fact that QUDA uses opaque data accessors, providing an abstraction layer
between data order and the computation that uses this data, none of these details leak into the
high-level computation code: deploying these bit-packed data types is merely a change in template
instantiation.

5.2 Precision

In Figure 2 we plot the cumulative distribution function of the absolute deviation of the HISQ
Dslash, running on an NVIDIA GPU, using as reference a distinct FP64 implementation running
on a host CPU. For the 20-bit format we see only a modest improvement versus half precision: this
is not surprising since in this case we are still using a 16-bit gauge field. For 30-bit, we see that
we must perform the computation using FP64, else we see effectively unchanged precision versus a
pure FP32 implementation. Notably, we see that the 30-bit format, together with FP64 computation
achieves around two orders of magnitude additional precision versus pure FP32, with errors ∼ 10−9

as we would expect from our epsilon expectations for the 30-bit format.

Figure 2: CDF of the absolute deviation for the ap-
plication of the HISQ operator to a random source
vector (𝑉 = 363 × 72, 𝛽 = 6.3, 𝑚 = 0.001)).

Figure 3: Performance in GFLOPS for the appli-
cation of the HISQ operator on a Quadro GV100
(𝑉 = 324).

5.3 Performance

Clearly there is a non-trivial overhead from using these bit-packed data types compared with
using the usual IEEE floating point formats. Thus, even if these formats provide significantly more
precision, it may not prove to be a net gain. In Figure 3 we plot the performance of the QUDA HISQ
dslash on an NVIDIA GPU. We see the desired behaviour, that the overhead of using these bit-packed
formats is negligible, and performance is essentially identical to the equivalent legacy formats. It
is noteworthy that with the 30-bit format, we can afford the additional packing / unpacking, as
well performing all computation using FP64, and yet still have the same performance as pure
FP32. Of course, this statement will be an architecture-dependent one: different architectures can
have differing ratios of floating point to integer throughput, and the significant increase in integer
processing requirements for unpack and packing these formats could prove significant on other
architectures.
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6. Solver Results

In this section we give some examples that illustrate the improved convergence possible from
using these bit-packed formats. For brevity we refer to the 16-bit / 20-bit / FP32 format simply as
"20-bit" and similarly the 32-bit / 30-bit / FP64 format as "30-bit". The results here are illustrative,
not definitive, and for this initial technology demonstration we use only a single gauge configuration
taken from the NERSC medium benchmark set [15].

6.1 BiCGStab(𝑙)
The BiCGStab(𝑙) solver is an enhancement over the BiCGStab solver in that it extends the

single iteration MR minimization to 𝑙 iterations of GCR minimization [16]. Thus each 𝑙 steps
we are required to orthogonalize an 𝑙-length vector set. In principle a greater value of 𝑙 will lead
to smoother convergence, however, lack of precision in the orthogonalization can result in solver
breakdown. In Figure 4 we plot the convergence history from using BiCGStab(4) for the HISQ
staggered operator using pure double, double-single, double-int30, double-int20, and double-half
mixed-precision solvers. The corresponding time to solution and iteration counts are shown in
Table 2. We see improved convergence for double-int30 versus double-single resulting in a reduced
time to solution. The stand out improvement comes from double-int20 versus double-half, where
we see the improved precision from the vectors (fermions) alone dramatically stabilizes the solver
convergence leading to the optimal approach. We attribute this improvement to the increased
stability of orthogonalization in the solver.

Figure 4: Convergence history of BiCGStab(4)
solver for the HISQ operator (𝑉 = 363 × 72, 𝛽 = 6.3,
𝑚 = 0.001)).

iter Time (s)
pure double 26064 307
double-single 27308 159
double-int30 26580 150
double-int20 29336 106
double-half 67552 247

Table 2: Iterations and time to solution
for the results shown in Figure 4.

6.2 Multi-shift CG
For the baseline we deploy the mixed-precision strategy as described in §3.2, and compare this

to an improved variant where we run the initial multi-shift solver in double-int30 (as opposed to
double-single) and the refinement CG solver now uses double-int20 (opposed to double-half). In
Table 3 we compare the iteration counts for an example multi-shift CG solve.4 For both approaches
we see it is the intermediate shifts that require the greatest refinement iterations: this is because

4This is taken from a light quark solve in RHMC, each shift has a unique target residual here where the tolerance is
set to optimize for the resulting force contribution [17].
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double-single-half double-int30-int20 target residual
shift iter 𝑟𝜎 iter 𝑟𝜎

(multi-shift) 8728 - 8726 - 1.00e-05
0 2323 8.91e-05 2320 8.92e-05 1.00e-05
1 40 4.82e-03 10 2.62e-04 1.75e-05
2 113 1.82e-03 12 9.93e-05 3.86e-05
3 432 6.14e-04 15 3.33e-05 8.85e-05
4 411 1.95e-04 18 1.06e-05 2.05e-08
5 323 6.08e-05 22 3.29e-06 4.81e-09
6 232 1.87e-05 44 1.01e-06 1.15e-09
7 158 5.64e-06 60 3.01e-07 2.50e-10
8 114 2.03e-06 56 1.04e-07 4.64e-11
9 81 9.10e-07 45 4.24e-08 1.30e-11
10 64 5.96e-07 37 2.41e-08 6.85e-12
total 13019 11365

Table 3: Multi-shift and subsequent refinement CG solver iteration counts: shift 0 represents a continuation
of the multi-shift solve but on the unshifted system only. For each shift we show the true residual after the
initial multi-shift solve 𝑟𝜎 and the target residual (𝑉 = 363 × 72, 𝛽 = 6.3, 𝑚 = 0.001).

they are far enough away from the unshifted system that their residuals have drifted sufficiently,
while at the same time not being heavy enough to have fast convergence. For the unshifted system
we see virtually identical convergence for new versus old. However, when we look at the shifted
systems we see in all cases more than an order of magnitude reduction in the residual. As a result
we see a dramatic reduction in the additional refinement iterations required, going from hundreds
of iterations required per shift to a few dozen per shift. The overall effect is a reduction in total
number of operator applications by around 13%.

7. Conclusion
In this work we have introduced LQCD-specific storage formats that achieve more precision

at fixed bit width compared to the conventional IEEE floating point formats. Given the bandwidth-
bound nature of LQCD computations, this method can be an important optimization approach. The
effect on mixed-precision solvers was illustrated, where we observe we can reduce the total number
of iterations at fixed bit width without any significant raw performance impact.

This work is just an initial investigation and there a number of possible applications for these
techniques. Beyond solver stabilization, one application could be offline storage using more efficient
bit-packed formats for storing gauge fields or propagators. One interesting application may be for
extending beyond double precision: present-day LQCD computations are starting to bump up
against the precision limits of IEEE double precision, with some gauge generation implementations
now selectively utilizing 128-bit precision floating point precision [18], whether it be true quad
or double-double. As the need for extended precision increases, an alternative would be to use a
Tailor-made precision format with just the right amount of precision for the application at hand.

10



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
3
3
8

Maximizing the Bang Per Bit M. A. Clark

Appendix A Example: 20-bit staggered fermion vector

We include the C++ code below as an example of how to implement the packing and unpacking
for a 20-bit staggered fermion. One implementation detail we call out: while we have signed numbers
in general, bit shifting should be done with unsigned integers to prevent undefined behaviour.

1 template <unsigned int B, typename T> T signextend(const T x) {

2 struct {T x:B;} s;

3 s.x = x;

4 return s.x;

5 }

6

7 union float_structure {

8 float f;

9 struct float32 {

10 unsigned int mantissa : 23;

11 unsigned int exponent : 8;

12 unsigned int sign : 1;

13 } s;

14 };

15

16 template <> struct alignas (16) spinor_packed <20> {

17 static constexpr unsigned int bitwidth = 20;

18 static constexpr float scale = 524287; // 2^19 - 1

19

20 // the struct consists of 4x 32 bit words

21 unsigned int a_re : 20;

22 unsigned int a_im_hi : 12;

23

24 unsigned int a_im_lo : 8;

25 unsigned int b_re : 20;

26 unsigned int b_im_hi : 4;

27

28 unsigned int b_im_lo : 16;

29 unsigned int c_re_hi : 16;

30

31 unsigned int c_re_lo : 4;

32 unsigned int c_im : 20;

33 unsigned int exponent : 8;

34

35 // Pack a 3 component complex vector into this

36 template <typename spinor > void pack(const spinor &in) {

37 // find the max

38 float max = {fabsf(in[0]. real()), fabsf(in[0]. imag())};

39 for (int i = 1; i < 3; i++) {

40 max = fmaxf(max , fabsf(in[i].real()));

41 max = fmaxf(max , fabsf(in[i].imag()));

42 }

43

44 // compute rounded up exponent for rescaling

45 float_structure fs;

46 fs.f = max [0] / scale;

47 fs.s.exponent ++;

11
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48 fs.s.mantissa = 0;

49 exponent = fs.s.exponent;

50

51 // negate the exponent to avoid the division below

52 fs.s.exponent = -(fs.s.exponent - 127) + 127;

53

54 // rescale and convert to integer

55 int vs[6];

56 for (int i = 0; i < 3; i++) {

57 vs[2 * i + 0] = lrint(in[i].real() * fs.f);

58 vs[2 * i + 1] = lrint(in[i].imag() * fs.f);

59 }

60

61 unsigned int vu[6];

62 for (int i = 0; i < 6; i++) memcpy(vu + i, vs + i, sizeof(int));

63

64 // split into required bitfields

65 a_re = vu[0];

66 a_im_hi = vu[1] >> 8;

67

68 a_im_lo = vu[1] & 255;

69 b_re = vu[2];

70 b_im_hi = vu[3] >> 16;

71

72 b_im_lo = vu[3] & 65535;

73 c_re_hi = vu[4] >> 4;

74

75 c_re_lo = vu[4] & 15;

76 c_im = vu[5];

77 }

78

79 // Unpack into a 3-component complex vector

80 template <typename spinor > void unpack(spinor &v) {

81 // reconstruct 20-bit numbers

82 unsigned int vu[6];

83 vu[0] = a_re;

84 vu[1] = (a_im_hi << 8) + a_im_lo;

85 vu[2] = b_re;

86 vu[3] = (b_im_hi << 16) + b_im_lo;

87 vu[4] = (c_re_hi << 4) + c_re_lo;

88 vu[5] = c_im;

89

90 // convert to signed

91 int vs[6];

92 for (int i = 0; i < 6; i++) memcpy(vs + i, vu + i, sizeof(int));

93

94 // signed extend to 32 bits and rescale

95 float_structure fs;

96 fs.f = 0;

97 fs.s.exponent = exponent;

98

99 using real = decltype(v[0]. real());
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100 for (int i = 0; i < 3; i++) {

101 v[i].real(static_cast <real >(signextend <bitwidth >(vs[2 * i + 0])) *

fs.f);

102 v[i].imag(static_cast <real >(signextend <bitwidth >(vs[2 * i + 1])) *

fs.f);

103 }

104 }

105 };

Listing 4: 20-bit format for a staggered fermion
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