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1. Introduction

The anomalous magnetic moment of the muon is a well suited quantity for precision tests of the
standard model. With the published results of the E989 Experiment at Fermilab in 2021 confirming
the earlier measurement at BNL the experimental world average is under a 4.2 𝜎 tension with the
white paper result from the theory side in 2020, see Ref. [1]. However, there is also a full lattice
calculation claiming a smaller deviation from the experimental result, see Ref. [2]. It is therefore
of high interest to further investigate the theory calculation of this quantity. The largest part of
the standard model result comes from pure QED effects. But, the main part of the uncertainty
is due to hadronic effects. These effects need to be addressed non-perturbatively because of the
running coupling of QCD. They can be classified through the order of the electromagnetic coupling
𝛼QED they are multiplying. The leading hadronic contribution to 𝑂 (𝛼2

QED) is the hadronic vacuum
polarization. There are two approaches to calculate this quantity: the data-driven approach and the
determination with lattice QCD. Recently a tension between the two approaches is observed. A
proposal for understanding the tension is to compare the intermediate window observable 𝑎W

𝜇 , first
introduced in Ref. [3] computed in both approaches. This observable is less sensitive to lattice
artifacts, so it can be calculated with sub-percent precision. Many collaborations have recently come
up with results for this quantity. On the side of the data-driven approach the window observable is
expressed by modifying the relevant kernel function. The latest results on this are given in Ref. [4].

So far, all lattice results for 𝑎W
𝜇 are calculated using the time-momentum representation (TMR)

[5], which involves a Euclidean-time correlation function calculated at vanishing spatial momentum.
Here, we focus on a different formulation using a covariant coordinate space (CCS) framework,
first proposed in Ref. [6]. As there is a family of possible CCS kernel functions, this method
offers a more flexible way of implementing the spatial integral. Another motivation for choosing
this method is that in this framework lattice artifacts can be very different. In that sense, the
CCS method gives a different point of view on the continuum extrapolation of the lattice data and
therefore a valid check for the results obtained in the TMR method.

We present results for the isovector and strange-connected contribution to the window quantity
in the CCS method at an unphysical pion mass of ∼ 350 MeV with 4 different lattice spacings. The
complete details of the calculation can be found in Ref. [7], where the results for the two considered
channels are extrapolated to the reference point (𝑚𝜋 , 𝑚𝐾 ) = (350 MeV, 450 MeV). The aim of this
proceeding is as follows: We outline the important parts of the calculation, with just the necessary
information to understand the procedure. We refer the reader to Ref. [7] for technical details.
We recall the window quantity in the TMR formulation in Sect. 2 and discuss its associated CCS
representation in Sect. 3. We give details on the chosen lattice setup in Sect. 4. In Sect. 5 the
model for correcting for finite-size effects is explained. In Sect. 6, a preliminary study of the chiral
and continuum extrapolation is performed, where the pion-mass dependence in the continuum limit
is assumed to be identical to that of the TMR-based Mainz 2022 result, Ref. [8].

2. Time-momentum representation

The state-of-the-art method to calculate the hadronic vacuum polarization contribution to the
anomalous magnetic moment of the muon 𝑎

hvp
𝜇 on the lattice is based on the time-momentum
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representation (TMR) (see [5])

𝑎
hvp
𝜇 =

(𝛼
𝜋

)2 ∫ ∞

0
𝑑𝑡 𝑓 (𝑡, 𝑚𝜇)𝐺 (𝑡) (1)

where 𝐺 (𝑡) is the spatially-summed two-point correlator

𝐺 (𝑡) = −1
3

3∑︁
𝑖=1

∫
𝑑3𝑥⟨ 𝑗𝑖 (𝑥) 𝑗𝑖 (0)⟩ (2)

and 𝑓 (𝑡, 𝑚𝜇) is the TMR kernel function, with 𝑡 = 𝑡𝑚𝜇

𝑓 (𝑡, 𝑚𝜇) =
2𝜋2

𝑚2
𝜇

(
− 2 + 8𝛾𝐸 + 4

𝑡2
+ 𝑡2 − 8𝐾1(2𝑡)

𝑡
+ 8 ln(𝑡) + 𝐺2,1

1,3

(
𝑡2
��� 3

2
0, 1, 1

2

) )
(3)

where 𝐾1 is a modified Bessel function of the second kind and 𝐺𝑚,𝑛𝑝,𝑞 is a Meĳer function. As first
presented in Ref. [3] it is possible to restrict the integration region of Eq. (1) to an intermediate
window by using a smooth heaviside function 𝜃Δ(𝑡) = 1

2 (1 + tanh( 𝑡
Δ
)). The kernel function is then

transformed in the following way

𝑓𝑊 (𝑡, 𝑚𝜇) =
(𝛼
𝜋

)2
(𝜃Δ(𝑡 − 𝑡0) − 𝜃Δ(𝑡 − 𝑡1)) · 𝑓 (𝑡, 𝑚𝜇) (4)

where the values for the standard intermediate window are 𝑡0 = 0.4 fm, 𝑡1 = 1.0 fm and Δ = 0.15
fm. The window quantity in the TMR formulation then reads

𝑎W
𝜇 =

∫ ∞

0
𝑑𝑡 𝑓𝑊 (𝑡, 𝑚𝜇)𝐺 (𝑡) (5)

It is analogously possible to define a short-distance window quantity 𝑎SD
𝜇 by using 𝑡SD

0 = 0 fm,
𝑡SD
1 = 0.4 fm and a long-distance window quantity 𝑎LD

𝜇 with 𝑡LD
0 = 1.0 fm, 𝑡LD

1 = ∞, where
Δ = 0.15 fm is fixed. The total hadronic contribution 𝑎hvp

𝜇 is then easily recovered through

𝑎
hvp
𝜇 = 𝑎SD

𝜇 + 𝑎W
𝜇 + 𝑎LD

𝜇 . (6)

This allows for a different treatment of each of the individual contributions using different methods.
The intermediate window quantity is well suited for lattice calculations, because it is less sensitive
to lattice artifacts. This comes from the fact that the short-distance region, where cut-off effects
are expected to be significant as well as the long-distance region, where finite-size effects are a
dominant source of error, are highly suppressed in the calculation of this observable.

3. Covariant coordinate-space method

A different approach for the calculation of 𝑎W
𝜇 is the covariant coordinate-space (CCS) method

introduced in Ref. [6]. As worked out in Ref. [7] the intermediate window quantity defined in Eq.
(5) can be translated into a CCS formulation as well:

𝑎W
𝜇 =

∫
𝑑4𝑥𝐻𝜇𝜈 (𝑥)𝐺𝜇𝜈 (𝑥), (7)
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Id 𝛽 𝐿3 × 𝑇 𝑎 [fm] 𝑚𝜋 [MeV] 𝑚𝐾 [MeV] 𝑚𝜋𝐿 𝐿 [fm]
#confs
light/strange

U102 3.4 243 × 96 0.08636 353(4) 438(4) 3.7 2.1 200/0
H102 323 × 96 4.9 2.8 240/120
S400 3.46 323 × 128 0.07634 350(4) 440(4) 4.2 2.4 240/120
N203 3.55 483 × 128 0.06426 346(4) 442(5) 5.4 3.1 90 × 2/90 × 2
N302 3.7 483 × 128 0.04981 346(4) 450(5) 4.2 2.4 240/120

Table 1: Overview of the used ensembles. The lattice spacings are determined in Ref. [9] and the pion and
kaon masses are taken from Ref. [8].

where 𝐺𝜇𝜈 (𝑥) = ⟨ 𝑗𝜇 (𝑥) 𝑗𝜈 (0)⟩ is the vector-vector correlator and the CCS Kernel function can be
determined by:

𝐻𝜇𝜈 (𝑥) = −𝛿𝜇𝜈H1( |𝑥 |) +
𝑥𝜇𝑥𝜈

|𝑥 |2
H2( |𝑥 |) (8)

with

H1( |𝑥 |) =
2

9𝜋 |𝑥 |4

∫ |𝑥 |

0
𝑑𝑡

√︁
|𝑥 |2 − 𝑡2(2|𝑥 |2 + 𝑡2) 𝑓𝑊 (𝑡, 𝑚𝜇) (9)

H2( |𝑥 |) =
2

9𝜋 |𝑥 |4

∫ |𝑥 |

0
𝑑𝑡

√︁
|𝑥 |2 − 𝑡2(4𝑡2 − |𝑥 |2) 𝑓𝑊 (𝑡, 𝑚𝜇). (10)

Using the fact that the continuum vector-vector correlator is conserved 𝜕𝜇𝐺𝜇𝜈 = 0, it is possible to
add a term to the CCS Kernel function 𝐻𝜇𝜈 (𝑥) = 𝐻𝜇𝜈 (𝑥) + 𝜕𝜇

(
𝑥𝜈𝑔( |𝑥 |)

)
which amounts only to a

surface term that vanishes in infinite volume. This means that there is a family of kernel functions
𝐻𝜇𝜈 (𝑥) resulting in the same integral, but with a differently-shaped integrand. This is an advantage
in contrast to the TMR method, where the kernel function 𝑓 (𝑡, 𝑚𝜇) is fixed. When choosing an
appropriate kernel function, there are two main considerations one has to take into account. A
short-ranged kernel function is often preferred in order to suppress the noisy behaviour of the tail
of the integrand. Another criterion is the control over finite-size effects. It is desirable to choose a
kernel function that results in small finite-size effects. As explained in Ref. [7], for the ensembles
we use, the finite-size effects were best controlled using the traceless kernel function

𝐻TL
𝜇𝜈 (𝑥) =

(
− 𝛿𝜇𝜈 + 4

𝑥𝜇𝑥𝜈

|𝑥 |2
)
H2( |𝑥 |). (11)

4. Lattice setup

We use five different 𝑁 𝑓 = 2 + 1 flavor gauge ensembles generated by the Coordinated Lattice
Simulations consortium [10] with a pion mass around 350 MeV. These ensembles have been
generated with the O(𝑎)-improved Wilson-Clover fermion action and tree-level O(𝑎2) improved
Lüscher-Weisz gauge action. Details about the used ensembles can be found in Tab. 1. The lattice
spacings were determined in Ref. [9] and the pion and kaon masses are taken from Ref. [8]. Open
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boundary conditions are employed for all of the listed ensembles. For the ensemble N203, two
replica have been included in the analysis. We calculate only the highly dominant isovector and
the strange-connected contribution. In order to control discretization effects, we use two different
formulations of the vector current, the local (L)

𝑗
(L)
𝜇 (𝑥) = 𝜓̄(𝑥)𝛾𝜇Q𝜓(𝑥) , (12)

and conserved (C)

𝑗
(C)
𝜇 (𝑥) = 1

2

(
𝑗
(N)
𝜇 (𝑥) + 𝑗 (N)

𝜇 (𝑥 − 𝑎𝜇̂)
)
, (13)

𝑗
(N)
𝜇 (𝑥) =

1
2

[
𝜓̄(𝑥 + 𝑎𝜇̂) (1 + 𝛾𝜇)𝑈†

𝜇 (𝑥)Q𝜓(𝑥) − 𝜓̄(𝑥) (1 − 𝛾𝜇)𝑈𝜇 (𝑥)Q𝜓(𝑥 + 𝑎𝜇̂)
]
, (14)

where 𝑈𝜇 (𝑥) is the gauge link and Q is a generic quark charge matrix acting in flavor space. We
furthermore use the improved vector current

𝑗
(𝛼) ,I
𝜇 (𝑥) = 𝑗𝜇 (𝑥) + 𝑎𝑐 (𝛼)𝑉

𝜕𝜈𝑇𝜇𝜈 (𝑥), for 𝛼 = L, C , (15)

where the local tensor current is defined by 𝑇𝜇𝜈 ≡ −1
2 𝜓̄(𝑥) [𝛾𝜇, 𝛾𝜈]Q𝜓(𝑥) and 𝑐 (𝛼)

𝑉
is an improve-

ment coefficient. The conserved current 𝑗 (C)
𝜇 (𝑥) does not need to be renormalized. However, the

local current does need a multiplicative renormalization factor

𝑗
(L) ,R
𝜇 (𝑥) = 𝑍̂ (L)

V 𝑗
(L) ,I
𝜇 (𝑥). (16)

where we use the values for the factor 𝑍̂ (L)
𝑓

and the coefficient 𝑐 (𝛼)
𝑉

determined non-perturbatively
in Ref. [11].

To calculate 𝑎W
𝜇 using Eq. (7), we do not need to store the full position space correlator

⟨ 𝑗𝑖 (𝑥) 𝑗𝑖 (0)⟩. But, using the fact that the CCS kernel function in Eq. (8) is split into two Lorentz
scalars, one multiplying 𝑥𝜇𝑥𝜈 and the other multiplying 𝛿𝜇𝜈 , we only need to calculate the functions

𝐺conn.
1 (𝑟) = −Tr{Q2}

∑︁
𝑥∈Λ, |𝑥 |=𝑟

ℜTr[𝑆(𝑥, 0)𝛾𝜇𝑆(0, 𝑥)𝛾𝜇] , (17)

𝐺conn.
2 (𝑟) = −Tr{Q2}

∑︁
𝑥∈Λ, |𝑥 |=𝑟

ℜTr[𝑆(𝑥, 0)/𝑥𝑆(0, 𝑥)/𝑥] , (18)

where 𝑆(𝑥, 0) is the quark propagator for the light or the strange contribution. For the 𝑂 (𝑎)
improvement term it is necessary to calculate a third function

𝐺conn.
3 (𝑟) = −Tr{Q2}

∑︁
𝑥∈Λ, |𝑥 |=𝑟

ℜTr[𝑆(𝑥, 0)𝛾𝜇𝑆(0, 𝑥) (/𝑥𝛾𝜇 − 𝛾𝜇/𝑥)] . (19)

This fact was previously discussed in Ref. [12]. Eqs. (17 - 19) hold for the case of two local vector
currents (LL). Additionally, we calculate the functions𝐺conn.

𝑖
for the case, where one of the currents

is conserved. Deriving analogous expressions for the conserved-local (CL) case is straightforward.
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CCS method 𝐻TL
𝜇𝜈 kernel TMR method

isovector strange isovector strange
Id (LL) (CL) (LL) (CL) (LL) (CL) (LL) (CL)

U102 174.26(191) 164.78(190) — — — — — —
H102 177.83(92) 168.66(90) 35.66(19) 33.54(19) 178.54(52) 179.75(52) 35.66(12) 35.90(11)
S400 175.21(96) 167.57(94) 34.90(20) 33.15(20) 173.82(69) 174.49(68) 34.402(86) 34.548(82)
N203 173.25(89) 167.60(88) 34.11(14) 32.83(13) 173.75(43) 174.11(43) 34.225(90) 34.283(89)
N302 169.08(96) 165.39(95) 33.31(17) 32.46(17) 167.77(87) 167.84(87) 32.427(83) 32.444(82)

Table 2: Comparison between the results for the light connected and strange contribution obtained in the
CCS method using spherical integration and the results of the Mainz group [8] using the TMR method. Finite
size corrections are applied to the light connected contribution for both methods. The results for U102 are
not included in the final analysis, due to the reasons explained in Ref. [7]. All values are in units of 10−10.

5. Correction for the finite-size effects

At the aimed level of precision it is necessary to correct the data in the isovector channel for
finite-size effects (FSE). The largest contribution to this correction comes from two-pion intermedi-
ate states. In the literature, many approaches have been developed for the TMR method, see Ref. [1]
for further references. For our position-space calculation, it is most convenient and transparent to
start with field theoretic approach. We decided to base our FSE corrections on the model described
in Ref. [13], with the Lagrangian in Euclidean spacetime

L =
1
4
𝐹𝜇𝜈 (𝐴)2 + 1

4
𝐹𝜇𝜈 (𝜌)2 + 1

2
𝑚2
𝜌𝜌

2
𝜇 +

𝑒

2𝑔𝛾
𝐹𝜇𝜈 (𝐴)𝐹𝜇𝜈 (𝜌) (20)

+(𝐷𝜇𝜋)†(𝐷𝜇𝜋) + 𝑚2
𝜋𝜋

†𝜋

with the covariant derivative 𝐷𝜇 ≡ 𝜕𝜇 − 𝑖𝑒𝐴𝜇 − 𝑖𝑔𝜌𝜇. The degrees of freedom of this theory
are described by the pion 𝜋, the photon 𝐴𝜇 and the massive rho meson 𝜌𝜇. We will refer to this
as the Sakurai QFT. As explained in Ref. [13] this theory is able to reproduce the Gounaris-
Sakurai parametrization of the pion electric formfactor. Starting from a Lagrangian formulation,
it is straightforward to renormalize the theory in infinite volume. The current-current correlator
computed in lattice QCD corresponds to 𝛿2 log 𝑍 [𝐴]

𝜕𝐴𝜇 (𝑥 )𝜕𝐴𝜈 (𝑦) , where 𝑍 [𝐴] is the partition function. This
is calculated in the Sakurai QFT in finite and infinite volume. The difference of this is added as a
finize-size correction to the result for 𝑎W

𝜇 calculated on each ensemble. For this calculation we use
the specific parameters for the pion and rho mass on each ensemble given in Ref. [14]. We do not
correct the strange-connected contribution for finite-size effects.

6. Continuum extrapolation

The results for each individual ensemble calculated in the CCS representation are displayed
in Tab. 2 together with the recent results of the Mainz group using the TMR representation [8].
The results for the isovector contribution for both methods are corrected for finite-size effects. We
observe that the results for the (LL) discretization for the larger ensembles H102 and N203 are in
good agreement with the results for the TMR method, while the results for S400 and N302 are
slightly higher. On the other hand the results for the (CL) discretization are very different. These
are much lower, than in the TMR method, especially for the coarser lattice spacings. This is not a

6
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contradiction since only the continuum results have to agree and both methods can have different
𝑂 (𝑎2) effects. The data furthermore suggests that the continuum extrapolation for the (CL) data in
the CCS method is expected to be flatter than for the TMR method. This is illustrated in Fig. 1.

At this point, we want to account for the differences in the pion and kaon masses of the chosen
ensembles, given in Tab. 1. It is possible to shift each of the results to the same reference point
in the (𝑚𝜋 , 𝑚𝐾 )-plane by using the global fit from the TMR method evaluated in Ref. [8]. This
shift is done ensemble-by-ensemble at the corresponding lattice spacings. Since both methods
have different discretization errors, this introduces an additional systematic error. In Ref. [7]
the reference point (𝑚𝜋 , 𝑚𝐾 ) = (350 MeV, 450 MeV) is chosen very close to the corresponding
pion and kaon masses of the used ensembles. This means that the shifts added to the individual
ensembles are very small and the systematic error for this procedure is almost negligible.

Since we have fully implemented the Symanzik improvement scheme, the 𝑂 (𝑎) effects are
absent in the continuum extrapolation and we can safely perform a fit linear in 𝑎2

𝑓1(𝑎, 𝛼1, 𝛽1) = 𝛼1 + 𝛽1𝑎
2 . (21)

To get an estimate on the systematic error of this fitting procedure we also perform fits involving
𝑎3, 𝑎2 log(𝑎) and 𝑎2/log(𝑎) terms and cuts in the lattice spacing. The systematic error is then
obtained by calculating the root-mean-square deviation from the individual fit results from their
average. For our final result, we evaluate the plain average between the (CL) and (LL) discretization
with the statistical error coming from the error of the fit. As the final results for the isovector
and strange-connected channel of the hadronic vacuum polarization contribution to the anomalous
magnetic moment of the muon at the reference point (𝑚𝜋 , 𝑚𝐾 ) = (350 MeV, 450 MeV) , we quote
the results from Ref. [7] (

𝑎W,I1
𝜇

)
ref

= 165.17(157)stat(99)syst × 10−10 , (22)(
𝑎W,s
𝜇

)
ref

= 32.49(22)stat(23)syst × 10−10 . (23)

For a complete evaluation of 𝑎W
𝜇 at the physical point, a more thorough analysis on the chiral

extrapolation becomes necessary. Eventually, one has to include ensembles with light pion-masses
to determine the meson-mass dependence in the CCS method, which could be different from
the TMR at non-vanishing lattice spacings. But as an exploratory study, we assume the same
meson-mass dependence as found for the TMR to calculate the necessary shift to (𝑚𝜋 , 𝑚𝐾 ) =

(134.9768 MeV, 495.011 MeV) on an ensemble-by-ensemble basis. These shifts are displayed in
Tab. 3. In Fig. 1 we show the continuum extrapolation at the physical point using Eq. (21) as the fit
function. For this exploratory study, we quote 25% of the shift as systematic error for the procedure.
The latter should be seen, however, as a naive estimate for the error. Using this method we obtain
the following results for the isovector and the strange-connected contribution at the physical point(

𝑎W,I1
𝜇

)
phys

= 186.38(175)stat(90)syst(𝑥)TMR × 10−10 , (24)(
𝑎W,s
𝜇

)
phys

= 27.71(25)stat(22)syst(𝑥)TMR × 10−10 . (25)

The (𝑥)TMR indicates that there is an additional systematic error associated with the fact that
we assume the same chiral dependence as in the TMR method. However, the shifts calculated in

7
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(a) Isovector contribution
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(b) Strange contribution

Figure 1: Continuum extrapolation at the reference point 𝑚𝜋 = 134.9768 MeV and 𝑚𝐾 = 495.011 MeV
using the TL-kernel. The isovector contribution is corrected for finite-size effects. For the strange contribution
no finite-size correction is applied. The smaller error bar is only the statistical error, the larger is the total
error.

Tab. 3 are independent of the lattice spacing, due to the explicit form of the fit function from the
TMR method. This suggests that this uncertainty is small. There is an additional uncertainty that
we express by (𝑥)TMR, which comes from using only one fit from the TMR method. We do not
account for the systematic uncertainty of this particular fit. A naive guess for the magnitude of this
uncertainty is the total systematic error of the result in the TMR method, which is of the same order
of magnitude as the systematic error of fitting procedure in the CCS method described above.

isovector strange
Id (LL) (CL) (LL) (CL)

H102 21.51(54) 21.46(54) -5.28(7) -5.27(7)
S400 21.33(55) 21.28(55) -5.05(7) -5.04(7)
N203 20.66(53) 20.62(54) -4.99(7) -4.98(7)
N302 20.77(56) 20.71(56) -4.56(6) -4.56(6)

Table 3: Corrections to the physical point 𝑚𝜋 = 134.9768 MeV 𝑚𝐾 = 495.011 MeV calculated in the TMR
method. All values are in units of 10−10

7. Conclusion

After showing preliminary results at the lattice conference 2022, we have finalized the calcula-
tion of 𝑎W

𝜇 at an unphysical pion mass of 𝑚𝜋 = 350 MeV. This provides a significant check for the
calculation using the TMR method, where we refer to the results of the Mainz group [8]. In Ref. [7]
the complete details of the calculation in the CCS method are shown, confirming the results of the
TMR method. We have furthermore demonstrated in this proceeding that with the global fit using
the results form the TMR method, it is possible to perform a naive extrapolation to the physical pion
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and kaon mass, at the cost of additional systematic uncertainties. At first glance, the center values
of these contributing channels are in good agreement with the published lattice results, although a
more careful study of the chiral extrapolation and its associated error is still needed.

We have outlined the important steps of the calculation of 𝑎W
𝜇 in the CCS method, including

the treatment of finite-size effects. This can be used as a guideline for the calculation of other
interesting quantities on the lattice such as the the hadronic contribution to the running of the QED
coupling Δ𝛼 or even other Euclidean time window quantities for the hadronic contribution to 𝑎𝜇.
The flexibility to choose a kernel function in the CCS methods offers a possibility to optimize the
kernel function for a specific window. For a calculation of the short-distance window quantity it
may be beneficial to choose a more long-ranged kernel, in order to suppress cut-off effects of the
lattice.

Finally, we want to mention the application of the CCS representation for master-field simula-
tions [15], where only a small amount of gauge configurations are simulated on a very large lattice.
Since for these calculations, the necessary statistics is gathered from many different coordinate-
space subvolumes of the master-field, a coordinate-space framework is well suited in order to
perform the calculation of an observable. Therefore, the CCS representation might be favorable in
this case.
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