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1. Introduction

In spite of its remarkable success in explaining almost all current experiments, the standard
model of particle physics [1] cannot be complete—it cannot explain the observed cosmology. In
particular, it cannot give rise to a universe with the observed vast excess of matter over antimat-
ter [2]. Any initial excess would either have been diluted to nothing due to inflation, or would
have to be large enough to make current inflationary models impossible [3]. As pointed out by
Sakharov [4], one of the three conditions for a dynamical generation of this asymmetry is violation
of the symmetry under simultaneous charge-conjugation (C) and parity (P) flip, which is called the
CP-symmetry. The CP-violation (CPV) in the standard model due to the phase in the quark-mixing
matrix is too small to generate enough matter [5, 6]. Thus, we need CPV beyond the standard model
(BSM), and if the source of this violation couples to quarks and gluons, we generically expect static
electric dipole moments (EDM) of hadrons with non-zero spin. We will work with a low energy
effective theory with operators of dimension 4 and higher obtained by integrating out heavy BSM
degrees of freedom and here consider only operators up to dimension 6.

At dimension 4, we need only consider CPV due to the topological term in QCD, 𝐺𝜇𝜈𝐺̃
𝜇𝜈 .

By the singlet axial anomaly, this is related to the phase of the quark-mass determinant, which we
write symbolically as 𝑚𝜓̄𝛾5𝜓, and vanishes when any quark mass is zero. At dimension 5, we have
two operators, both of which arise only after the Higgs field acquires a vacuum expectation value,
𝑣EW, from operators that are dimension 6 when the weak interaction symmetry group is unbroken.
Their coefficients are, therefore, expected to be suppressed by 𝑣EW/𝑀2

BSM, where 𝑀BSM is the BSM
energy scale of the heavy particles integrated out. These two operators are the quark electric dipole
moment (qEDM), 𝜓̄Σ𝜇𝜈 𝐹̃

𝜇𝜈𝜓, and quark chromo-electric dipole moment (qcEDM), 𝜓̄Σ𝜇𝜈𝐺̃
𝜇𝜈𝜓.

At dimension 6, we encounter the gluon chromo-electric dipole moment operator (gcEDM), also
called the CPV Weinberg 3-gluon operator, 𝐺𝜇𝜈𝐺𝜆𝜈𝐺̃𝜇𝜆, and CPV four-Fermi operators with
various Lorentz and flavor structures.

Before calculating the contribution of these CPV operators to nEDM, we note that CP trans-
formations of elementary particle states needs careful definition [7]. The point is that in the
Lehmann-Symanzik-Zimmermann (LSZ) reduction, we first need to define asymptotic states that
behave as free particles in the relevant weak limit—which implies they have all the symmetries
of the noninteracting limit, including 𝑃. If the interaction does not have these symmetries, the
symmetry generator, however, varies with the asymptotic state, and is a property of the dynamics.
Nevertheless, any interpolating operator 𝑁̂ for the asymptotic nucleon state constructed to have the
proper Lorentz properties can always be rotated to ˆ̃𝑁 = 𝑒−𝑖𝛼𝑁 𝛾5 𝑁̂ to obtain the standard parity
operator on the asymptotic state. Furthermore, the 𝛼𝑁 can be chosen real if interactions have 𝑃𝑇
symmetry, as we assume here. A nonperturbative determination of 𝛼𝑁 can be obtained from the
nucleon two-point function:

lim
𝜏→∞

[
𝑟𝛼 (𝜏) ≡

ℑTr 𝛾5(1 + 𝛾4)⟨𝑁̂ (𝜏)𝑁̂ (0)⟩

ℜTr(1 + 𝛾4)⟨𝑁̂ (𝜏)𝑁̂ (0)⟩

]
. (1)

In Fig. 1, we show an example of the determination of this phase for the isovector qcEDM operator
and the isovector 𝜓̄𝛾5𝜓 operator with which it mixes.
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Figure 1: Determination of 𝛼𝑁 arising from the isovector qcEDM and 𝜓̄𝛾5𝜓 operators on the 𝑎 ≈ 0.12 fm,
𝑀𝜋 ≈ 310 MeV ensemble (called a12m310 henceforth), see Eq. (1) for details.

When working with the rotated fields, ˆ̃𝑁 , the operations 𝐶, 𝑃, and time reversal, 𝑇 , are repre-
sented by the standard operators, and the Dirac 𝐹1, Pauli 𝐹2, electric dipole 𝐹3, and anapole 𝐹𝐴 form
factor decomposition of the vector current between nucleon states takes the standard form. The Sachs
electric𝐺𝐸 ≡ 𝐹1−(𝑞2/4𝑀2

𝑁
)𝐹2 and magnetic𝐺𝑀 ≡ 𝐹1+𝐹2 form factors are also related to these as

usual. In particular, for the electromagnetic current, 𝐺𝐸 (0) = 𝐹1(0) is the electric charge which is
0 for the neutron and 1 for the proton; 𝐺𝑀 (0)/2𝑀𝑁 = 𝐹2(0)/2𝑀𝑁 is the magnetic dipole moment;
𝐹3(0)/2𝑀𝑁 is the CPV electric dipole moment and 𝐹𝐴 violates PT, and is 0 in our calculation.

The nEDM is thus obtained from the electric dipole moment form factor 𝐹3 at zero momentum
transfer, which requires calculating the matrix element of the electric current that is the source of
the electromagnetic field in the presence of CPV. When the CPV is the qEDM, the result is just the
tensor charge; for the other operators, it is the usual vector electromagnetic quark bilinear.

The inclusion of CPV due to qcEDM operator is straightforward using the Schwinger source
method [8]. Since the operator is a local quark bilinear, it can be included by modifying the
propagator. In the isovector case, the Fermion determinant is not modified. The Θ-term and the
gluon chromo-EDM operators are purely disconnected contributions and their calculation ends up
being a factor reweighting the vector-current 3-point function [9].

2. Quark Chromoelectric Dipole Moment

For the qcEDM operator, the propagators are evaluated with the qcEDM operator with a small
coefficient 𝜖 included in the Dirac operator. Since this operator is dimension 5, multiple insertions
bring in contributions that diverge as higher powers of the lattice spacing as we approach the
continuum limit. This necessitates us to do the calculation with 𝜖 small enough to avoid the effects
of these multiple insertions. In practice, we ensure this by staying in the linear regime of 𝜖 [9].

The nucleon interpolating operators couple not only to the nucleon, but all single- and multi-
particle states of appropriate symmetry. Traditionally, one used the 2-point functions, which have a
larger signal-to-noise ratio, to obtain the spectrum, and used this in the fits to the 3-point function
to extract the ground-state matrix elements. The quality of the fits to the 3-pt functions alone are
relatively insensitive to the spectrum, but the extracted matrix elements are sensitive to it. Recently,
it was discovered [10] that in some 3-point functions, the transition matrix elements between the
ground and a low-lying excited state make a sizable contribution even when the fits to the 2-point

3
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Figure 2: Example of ESC subtraction using two strategies for the 3-pt function in the presence of an
isovector qcEDM CPV with nucleon source-sink separation 𝜏 and insertion of 𝑉4 (𝑞) at 𝑡: on the left, we
assume that the excited state effects are saturated by those extracted from fitting to the 2-point function; on
the right, we assume that the excited state effects arise from the lowest 𝑁𝜋 multihadron intermediate.

Ensemble 𝑐𝑆𝑊 𝑎 (fm) 𝑡-range 𝐴

a12m310 1.05094 0.1207(11) 6–14 1.21374(62)
a12m220L 1.05091 0.1189(09) 7–14 1.21800(33)
a09m310 1.04243 0.0888(08) 8–22 0.99621(30)
a06m310 1.03493 0.0582(04) 14–30 0.77917(24)

Table 1: Lattice parameters and the value of the power-law subtraction coefficient 𝐴 defined in Eq. (2).

function do not discover the excited state. As a result, it is worthwhile to study the sensitivity to
assumption that the states that provide a leading correction in chiral perturbation theory do make a
contribution to the 3-point function. In our example, the lightest such state is an 𝑁𝜋 multihadron
state. In Fig. 2, we show an example of a 3-point function that is fit almost equally well by both
strategies, but where the result is very different under them. This leads to a systematic error that is
currently irreducible.

Since the lattice is a hard-cutoff regularization, even the on-shell matrix elements of the qcEDM
operator have power-law divergences. On general symmetry grounds, one can define a subtracted
operator 𝐶̃ whose on-shell matrix elements diverge at most logarithmically:

𝐶̃ = 𝑖𝜓̄Σ𝜇𝜈𝛾5𝐺𝜇𝜈𝑇
𝑎𝜓 − 𝑖 𝐴

𝑎2 𝜓̄𝛾5𝑇
𝑎𝜓 . (2)

A convenient condition for fixing 𝐴 is demanding ⟨Ω| 𝐶̃ |𝜋⟩ = 0. In Fig. 3, we show an example of
determination of this coefficient, and in Table 1, we provide the lattice parameters and the value of
𝐴 for the ensembles used in our study. This choice is especially convenient in leading order 𝜒PT,
since it implies that

𝛼𝑁 (𝐶̃) ≈ 0 =⇒ 1
𝐴

𝛼𝑁 (𝐶)
𝛼𝑁 (𝜓̄𝛾5𝜓)

≈ 1 . (3)

In Fig. 4, we show by example that this relation is true to about 10% in our calculations.
For our current study of isovector qcEDM operator, this power-law mixing does not lead to

a divergence in the physical effects. This is because the non-anomalous axial rotations allows the
isovector pseudoscalar operator to be rotated away. The only subtlety is that with Wilson-clover
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Figure 3: Example of the determination of the power-law subtraction coefficient 𝐴 defined in Eq. (2) for the
a12m310 ensemble.
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Figure 4: Ratio of 𝛼𝑁 determination from the qcEDM and 𝜓̄𝛾5𝜓 operators for two ensembles whose
parameters are given in Table 1. See Eq. (3) for details.

Fermions used in our study, the discretization breaks the axial symmetry explicitly, and leaves
behind 𝑂 (𝑎) effects. These can be studied explicitly by writing the nonanomalous axial Ward
identity

⟨𝜋
[
𝑎𝜕𝜇𝐴

𝜇 − 𝑐𝐴𝑎2𝜕2𝑃 + 𝐾̄ (𝑎2𝐶 − 𝐴𝑃)
]
⟩

⟨𝜋𝑃⟩ = 2𝑚̄𝑎(1 +𝑂 (𝑎2)) , (4)

where 𝐴𝜇 and 𝑃 are the isovector axial current and pseudoscalar operators, respectively, and 𝑐𝐴
and 𝐾̄ are nonperturbative coefficients. This equality can be used to determine 𝑐𝐴 from the long
time behavior of appropriate 2-point functions, and then 𝐾̄ from intermediate times. In Fig. 5, we
show an example of the determination of these constants, and in Table 2, we report the values for
the various ensembles. It is important to note that there is an important interplay between two small
constants: 𝐾̄ , which is zero if 𝑐sw is nonperturbatively tuned and 𝑚𝑎, the light quark mass in the
theory. Furthermore, because of Eq. (4), on-shell at zero-momentum, we have

M.E. of 𝑃 = M.E. of
𝑥 ≡ 𝑎2𝐾̄

𝑦 ≡ 2𝑚̄𝑎 + 𝐴𝐾̄
𝐶 , (5)

so that the power-law subtraction leads to an effect proportional to the qcEDM operator itself, with
the proportionality constant of order unity.

Putting everything together, we can calculate the CPV form-factor due to the power subtracted
qcEDM operator 𝐶̃ in three ways: either by multiplicatively renormalizing the lattice𝐶 or the lattice

5
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fit-range 𝜒2/d.o.f

Ensemble 𝑐𝐴 𝐾̄ 𝑐𝐴 𝐾̄ 𝑐𝐴 𝐾̄ 2𝑚̄𝑎
2𝑚̄𝑎
𝐾

2𝑚̄𝑎
2𝑚𝑎 + 𝐴𝐾

a12m310 4–11 3–11 0.66 0.88 0.054(10) 0.097(45) 0.02205(46) 0.23(10) 0.158(58)
a12m220L 4–11 3–11 2.08 3.09 0.0342(77) 0.183(35) 0.01152(21) 0.063(12) 0.0491(86)
a09m310 5–15 4–15 0.99 1.09 0.0277(40) 0.047(15) 0.01684(15) 0.35(11) 0.263(61)
a06m310 6–20 5–20 0.29 1.53 0.0093(17) 0.0272(60) 0.010460(37) 0.385(87) 0.331(50)

Table 2: The nonperturbative coefficients defined in Eq. (4) for various ensembles.
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Figure 6: The power-law subtracted nEDM for the neutron for two ensembles.

𝑃 operator, or by explicitly subtracting the two. In Fig. 6, we show the quality of the determination
by the three methods. We note that, presumably due to the smallness of 𝐾̄ and 𝑎𝑚, the 𝑂 (𝑎2)
effects neglected in Eq. (4) make a relatively large contribution and the difference between the three
methods gives a large systematic uncertainty. Ignoring these systematic uncertainties, as well as the
logarithmic renormalization and mixing, the continuum-chiral extrapolation of the nEDM is shown
in Fig. 7. We note that there is a trend towards more negative values at lower quark masses, whereas
the continuum extrapolation is almost flat.
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Figure 7: Chiral-continuum extrapolation for nEDM due to qcEDM.

Name 𝑎 (fm) 𝑀𝜋 (MeV) Name 𝑎 (fm) 𝑀𝜋 (MeV)
a127m285 0.127(2) 285(3) a094m270L 0.094(1) 269(3)
a094m220 0.094(1) 214(3) a094m220s 0.0925(10) 217(3)
a091m170 0.091(1) 170(2) a073m270 0.0728(8) 272(3)
a071m170 0.0707(8) 167(2) a056m280 0.056(1) 281(5)

Table 3: 2+1 clover-on-clover ensembles available for study. The a094m220s ensemble is at the SU(3) point,
the rest have 𝑚𝑠 close to the physical value.

3. QCD topological term

We previously reported [7] calculations of the nEDM due to the QCD topological term using
a mixed action calculation with clover valence quarks on a HISQ sea, using the same ensembles
presented above. These had lattice spacings in the range 0.057–0.151 fm, pion masses in the range
128–320 MeV, and used between 550 and 2200 configurations per ensemble. We now compare
the results with a new unitary clover-on-clover calculation (see Table 3) with lattice spacings in the
range 0.056–0.127 fm, pion masses in the range 167–285 MeV and using between 810 and 2100
configurations per ensemble. In Fig. 8, we show that the behavior of the charge under gradient flow
is similar in both the calculations.

As shown in Fig. 9, the new preliminary result for the topological susceptibility, [79.5(3.0) MeV]4,
from the clover lattices is very similar to 𝜒𝑄 = [66(9) (4) MeV]4 obtained from the HISQ lattices.
Both are in good agreement with the expectation from 𝜒PT:

1
𝜒𝑄

=
1

𝜒
quench.
𝑄

+ 4
𝑀2

𝜋𝐹
2
𝜋

(
1 − 𝑀2

𝜋

3𝑀2
𝜂

)−1

=⇒ 𝜒𝑄 =
[
79 MeV

]4 (6)

In Fig. 10, we compare the excited-state fits in the two formulations, and Fig. 11 shows the 𝑄2

extrapolations. There is a qualitative agreement between the two formulations, and the errors are
still large in both. Finally, in Fig. 12, we show our preliminary results for nEDM per unit qcEDM
after the simultaneous extrapolation of both the clover-on-clover and clover-on-HISQ data to the
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Figure 8: Topological charge (right) and its fractional part (left) as a function of gradient flow in HISQ
a09m310 (top) and clover a073m270 (bottom) ensembles.
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Figure 9: The chiral-continuum extrapolation of 𝜒𝑄 in the HISQ (top) and clover (bottom) ensembles.
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Figure 10: Example excited-state fits for the HISQ a09m310 (left) and clover a073m270 (right) ensembles.
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Figure 11: 𝑄2 extrapolations for the HISQ a09m310 ensemble (left) and clover a073m270 ensemble (right).
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Figure 12: Simultaneous chiral-continuum fit of the clover and HISQ results.

continuum 𝑎 → 0 and physical pion mass 𝑀𝜋 → 135MeV:

𝑑𝑁 = 𝑐1𝑀
2
𝜋 + 𝑐2𝑀

2
𝜋 log

(
𝑀2

𝜋

𝑀2
𝑁

)
+ 𝑐HISQ

3 𝑎 + 𝑐Clover
3 𝑎 −→ 0.0010(59) (7)

where only the statistical error has been included.
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4. Future

Several improvements are currently being worked on. As we showed, the subtraction of the
power divergence leads to uncertainties arising from the smallness of both the light quark mass and
the chiral symmetry breaking. A calculation with the qcEDM operator smoothed in the gradient
flow scheme [11], will allow 𝑎 → 0 limit at fixed physical smearing 𝑡. Since the axial Ward
identity is unbroken in this limit [12], this uncertainty can be removed. In addition, there is a
logarithmic mixing between the nEDM obtained from the qcEDM and qEDM operators that can
be perturbatively evaluated. Since the effect of the qEDM operator is already known to very high
accuracy [13], one can subtract this effect without affecting the final precision.

We thank the MILC collaboration [14], for providing the HISQ lattices. The calculations used
the CHROMA software suite [15]. Simulations were carried out at (i) the NERSC supported by
DOE under Contract No. DE-AC02-05CH11231; (ii) the USQCD collaboration resources funded
by DOE HEP, and (iii) Institutional Computing at Los Alamos National Laboratory. This work was
supported by LANL LDRD program and TB and RG were also supported by the DOE HEP under
Contract No. DE-AC52-06NA25396.
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