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1. Introduction

Supersymmetric models of strongly coupled theories are a very promising candidate for new
physics beyond the standard model. In recent years, numerical lattice studies of supersymmetric
extensions of QCD are becoming within reach. However, there are several well-known obstacles
arising from the breaking of Supersymmetry in a regularized theory on the lattice, including the
necessity for fine tuning of the theory’s bare Lagrangian. We are addressing these problems via per-
turbative calculations, to one loop and to lowest order in the lattice spacing. The quantities, which
we calculate in this work, are important ingredients in extracting nonperturbative information for
Supersymmetric Theories through lattice simulations.

As is the case with all known regulators, lattice breaks supersymmetry explicitly but it is the
only regulator which describes many aspects of strong interactions nonperturbatively. Note that
the coupling constants appearing in the lattice action are not all identical. On one hand, gauge
invariance of the action dictates that some of the interaction parts will have the same coupling, g
(gauge coupling); this is the case for the kinematic terms which contain covariant derivatives and
thus gluons couple with quarks, squarks, gluinos and other gluons with the same gauge coupling
constant. The Yukawa interactions between quarks, squarks and gluinos as well as the four-squark
interactions contain a different coupling constant, which must be fine tuned on the lattice. Exploit-
ing the symmetries of the action, we reduce the number of possible interaction terms and therefore,
their tuning. It is desirable to employ a lattice discretization which preserves as many as possible
of the continuum symmetries, so that the relevant operators to be tuned will be fewer. The overlap
formulation can be used, in order to preserve chiral symmetry, but we will first investigate these
tunings using the Wilson fermion action. The use of the overlap action is beyond the scope of the
present work.

In this work, we present a number of different results, which are obtained by using the SQCD
action on the lattice, regarding the renormalization of the Yukawa and quartic couplings. For the
gluon fields we use the Wilson gauge action, for fermions (quark, gluino fields) we employ the
Wilson fermion action, and for the squark fields we use naïve discretization. After presenting the
basics of the computation setup (Section 2), we start with a discussion of the renormalization of
the Yukawa couplings (Section 3) both in dimensional and lattice regularizations. We utilize the
MS renormalization scheme and we determine the renormalization factors to one-loop order. In the
same way, we also present some preliminary results for the renormalization of the quartic couplings
(Section 4). Finally, we end with a short summary and our future plans (Section 5).

2. Formulation and Computational Setup

In our calculation we make use of the SQCD action in the Wess-Zumino (WZ) gauge [1, 2,
3, 4, 5, 6]. In our lattice calculation, quarks (ψ), squarks (A±) and gluinos (λ ) are defined on
the lattice points whereas gluons (uµ ) are defined on the links between adjacent points: Uµ(x) =
exp[igaT αuα

µ (x+aµ̂/2)]; α is a color index in the adjoint representation of the gauge group. For
Wilson-type quarks and gluinos, the Euclidean action S L

SQCD on the lattice and in the massless
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limit becomes:

S L
SQCD = a4

∑
x

[Nc

g2 ∑
µ,ν

(
1− 1

Nc
TrUµ ν

)
+∑

µ

Tr
(
λ̄ γµDµ λ

)
−a

r
2

Tr
(
λ̄D2

λ
)

+ ∑
µ

(
Dµ A†

+Dµ A++Dµ A−Dµ A†
−+ ψ̄γµDµ ψ

)
−a

r
2

ψ̄D2
ψ

+ i
√

2gY
(
A†
+λ̄

α T α P+ψ − ψ̄P−λ
α T α A++A−λ̄

α T α P−ψ − ψ̄P+λ
α T α A†

−
)

+
1
2

g2
4(A

†
+T α A+−A−T α A†

−)
2
]
, (2.1)

where: P± =(1± γ5)/2, Uµν(x)=Uµ(x)Uν(x+aµ̂)U†
µ(x+aν̂)U†

ν (x), a is the lattice spacing, and a
summation over flavors is understood in the last three lines of Eq. (2.1). The 4-vector x is restricted
to the values x = na, with n being an integer 4-vector. The definitions of the covariant derivatives
are the standard definitions as shown in [5]. The terms proportional to the Wilson parameter, r,
eliminate the problem of fermion doubling, at the expense of breaking chiral invariance. In the
limit a → 0 the lattice action reproduces the continuum one. In order to recover SUSY in the
classical continuum limit, the tree level values of gY and g4 must coincide with g.

Note that a discrete version of a gauge-fixing term, together with the compensating ghost field
term, must be added to the action, in order to avoid divergences from the integration over gauge
orbits; these terms are the same as in the non-supersymmetric case. Similarly, a standard “measure”
term must be added to the action, in order to account for the Jacobian in the change of integration
variables: Uµ → uµ .

In Refs. [5] and [6], first lattice perturbative computations in the context of SQCD were pre-
sented; apart from the Yukawa and quartic couplings, the renormalization of all parameters and
fields appearing in the supersymmetric Lagrangian using Wilson gluons and fermions have been
extracted. In addition, the mixing of some composite operators under renormalization has been
explored. The results in these references [5, 6] will find further use in the present work. The ad-
ditional calculations of the fine tunings for the gluino-quark-squark and four-squark couplings are
essential prerequisites towards nonperturbative investigations.

Parity (P) and charge conjugation (C ) are symmetries of the lattice action and their definitions
are presented below:

P :



U0(x)→U0(xP) , Uk(x)→U†
k (xP −ak̂) , k = 1,2,3

ψ f (x)→ γ0ψ f (xP)

ψ̄ f (x)→ ψ̄ f (xP)γ0

λ f (x)→ γ0λ f (xP)

λ̄ f (x)→ λ̄ f (xP)γ0

A±(x)→ A†
∓(xP)

A†
±(x)→ A∓(xP)

(2.2)

where xP = (−x,x0).
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C :



Uµ(x)→U⋆
µ(x) , µ = 0,1,2,3

ψ(x)→−Cψ̄(x)T

ψ̄(x)→ ψ(x)TC†

λ (x)→Cλ̄ (x)T

λ̄ (x)→−λ (x)TC†

A±(x)→ A∓(x)
A†
±(x)→ A†

∓(x)

(2.3)

where T means transpose. The matrix C satisfies: (Cγµ)
T = Cγµ , CT = −C and C†C = 1. In

4 dimensions, in a standard basis for γ matrices, in which γ0, γ2 (γ1, γ3) are (anti-)symmetric,
C =−iγ0γ2.

Further symmetries of the classical action are:
U(1)R rotates the quark and gluino fields in opposite direction:

R :


ψ f (x)→ eiθγ5ψ f (x)
ψ̄ f (x)→ ψ̄ f (x)eiθγ5

λ (x)→ e−iθγ5λ (x)
λ̄ (x)→ λ̄ (x)e−iθγ5

(2.4)

U(1)A rotates the squark and the quark fields in the same direction as follows:

χ :


ψ f (x)→ eiθγ5ψ f (x)
ψ̄ f (x)→ ψ̄ f (x)eiθγ5

A±(x)→ eiθ A±(x)
A†
±(x)→ e−iθ A†

±(x)

(2.5)

For the purpose of studying Yukawa couplings, we examine the behavior under P and C of
all gauge invariant dimension-4 operators having one gluino, one quark and one squark field, as
shown in Table 1. Note that all operators that we consider here are flavor singlets.

Operators C P

A†
+λ̄P+ψ −ψ̄P+λA†

− A−λ̄P−ψ

ψ̄P−λA+ −A−λ̄P−ψ ψ̄P+λA†
−

A−λ̄P−ψ −ψ̄P−λA+ A†
+λ̄P+ψ

ψ̄P+λA†
− −A†

+λ̄P+ψ ψ̄P−λA+

A†
+λ̄P−ψ −ψ̄P−λA†

− A−λ̄P+ψ

ψ̄P+λA+ −A−λ̄P+ψ ψ̄P−λA†
−

A−λ̄P+ψ −ψ̄P+λA+ A†
+λ̄P−ψ

ψ̄P−λA†
− −A†

+λ̄P−ψ ψ̄P+λA+

Table 1: Gluino-quark-squark operators which are gauge invariant, flavor singlet and with dimensionality 4.
All matter fields carry a flavor index.

There are two linear combinations of Yukawa-type operators which are invariant under P and
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C [7]:

A†
+λ̄P+ψ − ψ̄P−λA++A−λ̄P−ψ − ψ̄P+λA†

− (2.6)

A†
+λ̄P−ψ − ψ̄P+λA++A−λ̄P+ψ − ψ̄P−λA†

− (2.7)

Thus, all terms within each of the combinations in Eqs. (2.6) and (2.7) are multiplied by the same
Yukawa coupling, gY1 and gY2 , respectively.

In the case of a theory with massive quarks, R is not a symmetry. In the absence of anomalies,
χ ×R leaves invariant each of the four constituents of the Yukawa term (Eq. (2.6)), but it changes
the constituents of the “mirror” Yukawa term (i.e. a term with all P+ and P− interchanged) by
phases e2iθ and e−2iθ and thus, it guarantees the absence of a “mirror” Yukawa term.

3. Renormalization of the Yukawa coupling

There are three one-loop Feynman diagrams that enter the computation of the 3-point ampu-
tated Green’s functions for the Yukawa couplings, shown in Fig. 1. We compute, perturbatively,
the relevant three-point (3-pt) Green’s functions using both dimensional regularization (DR) in
D = 4−2ε dimensions and lattice regularization (LR).

Figure 1: One-loop Feynman diagrams leading to the fine tuning of gY . A wavy (solid) line represents gluons
(quarks). A dotted (dashed) line corresponds to squarks (gluinos). In the above diagrams the directions of
the external line depend on the particular Green’s function under study. An arrow entering (exiting) a vertex
denotes a λ ,ψ,A+,A

†
− (λ̄ , ψ̄,A†

+,A−) field. Squark lines could be further marked with a +(−) sign, to
denote an A+ (A−) field.

For the renormalization of gY , we impose renormalization conditions which result in the can-
cellation of divergences in the corresponding bare 3-pt amputated Green’s functions with external
gluino-quark-squark fields and thus, the renormalization factors are defined in such a way as to re-
move all divergences. The application of the renormalization factors on the bare Green’s functions
leads to the renormalized Green’s functions, which are independent of the regulator (ε in DR, a in
LR).

For convenience of computation, we are free to make appropriate choices of the external mo-
menta. Having checked that no superficial IR divergences will be generated, we calculate the
corresponding diagrams by setting to zero only one of the external momenta. We present the one-
loop Green’s function for the Yukawa coupling for zero gluino momentum in DR with external
squark field A+.

⟨λ α1(0)ψ̄(q2)A+(q3)⟩DR,1loop =−i(2π)4
δ (q2 −q3)

gY g2

16π2
1

4
√

2Nc
T α1×[

−3(1+ γ5)+((1+α)(1+ γ5)+8γ5chv)N2
c +(1+ γ5)(−α +(3+2α)N2

c )

(
1
ε
+ log

(
µ̄2

q2
2

))]
(3.1)
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where chv = 0,1 for the naïve and ’t Hooft-Veltman (HV) prescription [5] of γ5. Note that the pole
parts do not depend on chv. We have verified that different choices for the external momenta lead
to the same values for the coefficients of the pole parts. The Green’s functions which involve the
external squark fields A†

+, A− and A†
− are similar to Eq. (3.1). The need of further conversion

factors, which connect MS renormalized Green’s functions to SUSY invariant Green’s functions,
is indicated by the supersymmetric Ward Identities [8, 9, 10]. The calculation of these conver-
sion factors is a purely continuum calculation; the same conversion factors can be applied to the
renormalization functions extracted in LR.

The difference between the renormalized Green’s functions and the corresponding Green’s
functions regularized on the lattice allows us to deduce the one-loop lattice renormalizations fac-
tors. The definition of the renormalization factors of the fields and the gauge coupling constant are
the following:

ψ ≡ ψ
B = Z−1/2

ψ ψ
R, (3.2)

uµ ≡ uB
µ = Z−1/2

u uR
µ , (3.3)

λ ≡ λ
B = Z−1/2

λ
λ

R, (3.4)

c ≡ cB = Z−1/2
c cR, (3.5)

g ≡ gB = Z−1
g µ

ε gR, (3.6)

where B stands for the bare and R for renormalized quantities and µ is an arbitrary scale with di-
mensions of inverse length. For one-loop calculations, the distinction between gR and gB is inessen-
tial in many cases; we will simply use g in those cases. The Yukawa coupling is renormalized as
follows:

gY ≡ gB
Y = Z−1

Y Z−1
g µ

εgR, (3.7)

where at the lowest perturbative order ZgZY = 1, and the renormalized Yukawa coupling coincides
with the gauge coupling.
The components of the squark fields may mix at the quantum level, via a 2×2 mixing matrix (ZA).
We define the renormalization mixing matrix for the squark fields as follows:(

AR
+

AR†
−

)
=
(

Z1/2
A

)( AB
+

AB†
−

)
. (3.8)

In Ref. [5] we found that in the DR and MS scheme this 2× 2 mixing matrix is diagonal. On the
lattice, however, this matrix is non diagonal and the component A+(A−) mixes with A†

−(A
†
+).

Taking as an example the Green’s function in DR with external squark field A+, the renormalization
condition up to g2 will be given by:

⟨λ (q1)ψ̄(q2)A+(q3)⟩
∣∣∣MS

= Z−1/2
ψ Z−1/2

λ
(Z−1/2

A )++⟨λ (q1)ψ̄(q2)A+(q3)⟩
∣∣∣bare

(3.9)

All appearances of coupling constants in the right-hand side of Eq. (3.9) must be expressed in terms
of their renormalized values, via Eqs. (3.6-3.7). The left-hand side of Eq. (3.9) is just the MS (free
of pole parts) renormalized Green’s function. Similar to Eq. (3.9), the other renormalization condi-
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tions which involve the external squark fields A†
+,A−,A

†
− are understood. We recall the following

fundamental results on the renormalization factor in DR which appear in the right-hand side of
Eq. (3.9).

ZDR,MS
ψ = 1+

g2CF

16π2
1
ε
(2+α) , ZDR,MS

A =

(
1+

g2CF

16π2
1
ε
(1+α)

)
1 (3.10)

ZDR,MS
λ

= 1+
g2

16π2
1
ε
(α Nc +N f ) , ZDR,MS

g = 1+
g2

16π2
1
ε

(
3
2

Nc −
1
2

N f

)
(3.11)

By means of Eq. (3.9) and for all Green’s functions and all choices of the external momenta which
we consider, we obtain the same value of ZDR,MS

Y :

ZDR,MS
Y = 1+

g2Nc

16π2
1
ε

3
2

CF (3.12)

where CF = (N2
c − 1)/(2Nc) is the quadratic Casimir operator in the fundamental representation.

As expected from general renormalization theorems, the MS renormalization factors for gauge
invariant objects are gauge-independent, as in the case of ZDR,MS

Y .

On the lattice, the renormalization matrix ZA is not diagonal; mixing between the squark com-
ponents appears on the lattice through the finite nondiagonal elements of ZA. A feature of Wilson
gluinos, which complicates the lattice formulation, is the appearance of an extra Yukawa coupling,
gY2 . The χ ×R symmetry is broken by using Wilson discretization and thus lattice bare Green’s
functions are not invariant under χ ×R at the quantum level. In the calculation of the bare Green’s
functions on the lattice, we expect that mirror Yukawa terms will arise at one-loop. The inclu-
sion of the appropriate powers of the couplings requires the introduction of ZY1 and zY2 , where
Z = 1+O(g2) and z = O(g2). The renormalization condition is the following:

⟨λ (q1)ψ̄(q2)A+(q3)⟩
∣∣∣MS

= Z−1/2
ψ Z−1/2

λ
⟨λ (q1)ψ̄(q2)

(
(Z−1/2

A )++A+(q3)+(Z−1/2
A )+−A†

−(q3)
)
⟩
∣∣∣bare

(3.13)

The Yukawa couplings are renormalized as follows:

gR
Y1
⟨λ (q1)ψ̄(q2)A+(q3)⟩

∣∣∣MS
= ZY1 gB

Y1
⟨λ (q1)ψ̄(q2)A+(q3)⟩

∣∣∣bare
+ zY2 gB

Y2
⟨λ (q1)ψ̄(q2)A+(q3)⟩

∣∣∣tree
+O(g5)

(3.14)

Analogous equations hold for the other Green’s functions which involve the Yukawa Interac-
tions of Eq. (2.6) and the corresponding mirror ones in Eq. (2.7). At this point, we recall several
lattice results which have been published in Ref. [5]:

ZLR,MS
ψ = 1+

g2 CF

16π2

(
−16.8025+3.7920α − (2+α) log

(
a2

µ̄
2)) (3.15)(

Z1/2
A

)LR,MS
= 1− g2 CF

16π2

{[
8.1753−1.8960α +

1
2
(1+α) log

(
a2

µ̄
2)](1 0

0 1

)
−0.1623

(
0 1
1 0

)}
(3.16)

ZLR,MS
λ

= 1− g2

16π2

[
Nc
(
16.6444−3.7920α +α log

(
a2

µ̄
2))+N f

(
0.07907+ log

(
a2

µ̄
2))]

(3.17)
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ZLR,MS
g = 1+

g2

16π2

[
−9.8696

1
Nc

+Nc

(
12.8904− 3

2
log
(
a2

µ̄
2))− N f

(
0.4811− 1

2
log(a2

µ̄
2)

)]
(3.18)

At first perturbative order, O(g2) , Eq. (3.13) and its counterparts involve only the difference be-
tween the one-loop MS-renormalized and bare lattice Green’s functions. Having checked that
alternative choices of the external momenta give the same results for these differences, we present
it only for zero gluino momentum and with external squark field A+.

⟨λ α1(0)ψ̄(q2)A+(q3)⟩MS,1loop −⟨λ α1(0)ψ̄(q2)A+(q3)⟩LR,1loop =−i(2π)4
δ (q2 −q3)

gY g2

16π2
1

4
√

2Nc
T α1×[

−3.7920α(1+ γ5)+(−3.6920+5.9510γ5 +7.5840α(1+ γ5)−8γ5chv)N2
c

+(1+ γ5)(α − (3+2α)N2
c ) log

(
a2

µ̄
2)] (3.19)

Notice that the differences between MS-renormalized and bare lattice Green’s functions with ex-
ternal squark filed A†

+ , A− and A†
− contain the same decimal numbers. This is to be expected, given

that these differences must lead to the same ZY
LR,MS. By combining the lattice expressions with

the MS-renormalized Green’s functions calculated in the continuum (see Eq. (3.13)), we find for
the renormalization factors:

ZY1
LR,MS = 1+

g2

16π2

(
1.58130

Nc
+(4.28489−2chv)Nc +0.520616N f −

3
2

CF log(a2
µ̄

2)

)
(3.20)

zY2
LR,MS =

g2

16π2

(
−0.08116

Nc
+(2.49192−2chv)Nc

)
(3.21)

We note that the above factors are gauge independent, as they should be in the MS scheme. Fur-
thermore, the multiplicative renormalization ZY1 is logarithmically divergent whereas the mixing
coefficient zY2 is finite.

4. Renormalization of the quartic coupling

There are seven one-loop Feynman diagrams (along with various mirror versions) that enter
in the computation of the 4-point amputated Green’s functions for the quartic couplings, shown
in Fig. 2. We compute, perturbatively, the relevant four-point (4-pt) Green’s functions using both
dimensional regularization (DR) and lattice regularization (LR). It is worth mentioning that the Ma-
jorana nature of gluinos manifests itself in diagram 7, in which λ −λ as well as λ̄ − λ̄ propagators
appear.

Quartic couplings (four-squark interactions) must be appropriately fine tuned on the lattice.
The U(1)A symmetry allows two squarks to lie in the fundamental representation and the other two
in the antifundamental; ignoring flavor indices, there are ten possibilities for choosing the quartic

7
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Figure 2: One-loop Feynman diagrams leading to the fine tuning of g4. Notation is identical to that of
Figure 1.

couplings:

(A†
+A+)(A

†
+A+), (A−A†

−)(A−A†
−), (4.1)

(A†
+A+)(A−A†

−), (A†
+A†

−)(A
†
+A†

−), (A−A+)(A−A+), (A−A+)(A
†
+A†

−),

(A†
+A+)(A

†
+A†

−), (A†
+A+)(A−A+), (A−A†

−)(A
†
+A†

−), (A−A†
−)(A−A+)

Pairs of squark fields in parenthesis denote color-singlet combinations. One must further take into
account C and P to construct combinations which are invariant under these symmetries. There
are five combinations as shown in Table 2.

Operators C P

λ1[(A
†
+A+)

2 +(A−A†
−)

2] + +

λ2[(A
†
+A†

−)
2 +(A−A+)

2] + +

λ3(A
†
+A+)(A−A†

−) + +

λ4(A
†
+A†

−)(A−A+) + +

λ5(A
†
+A†

−+A−A+)(A
†
+A++A−A†

−) + +

Table 2: Operators which are gauge invariant, flavor singlets and with dimensionality 4. All operators
appearing in this table are eigenstates of charge conjugation, C , and parity, P . In the above operators, the
squark fields should be explicitly identified with a flavor index. The flavor indices carried by the left fields
are the same as those of right fields. The symbols λi are the five quartic couplings.

The tree-level values of λi (quartic couplings) which satify SUSY are:

λ1 =
1
2

g2 Nc −1
2Nc

, λ3 =
1
2

g2 1
Nc

, λ4 =−1
2

g2, λ2 = λ5 = 0 (4.2)

These couplings may receive quantum corrections, coming from the Feynman diagrams of Fig. 2.
The calculation of these diagrams is presently underway.
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5. Summary – Future Plans

In this work, we study the renormalization of the Yukawa (gluino-quark-squark interactions)
and the quartic (four-squark interactions) couplings that arise in N = 1 Supersymmetric QCD. In
order to extract the renormalizations and the mixing coefficients, which are related to the Yukawa
coupling, we compute, perturbatively to one-loop and to the lowest order in the lattice spacing, the
relevant three-point Green’s functions using both dimensional and lattice regularizations.

In our ongoing investigation we are calculating perturbatively the relevant four-point Green’s
functions so as to deduce the renormalization of the quartic coupling. It would be highly interesting
to apply these fine-tunings in Monte Carlo simulations of the SQCD action. Another natural ex-
tension of our work is the perturbative study of Supersymmetric non-abelian models on the lattice
using chirally invariant actions.
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