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Topological freezing is a well known problem in lattice simulations: with shrinking lattice spacing
a transition between topological sectors becomes increasingly improbable, leading to a problematic
increase of the autocorrelation time regarding several observables. We present our investigation of
metadynamics as a solution for topological freezing in the Schwinger model. Specifically, we take
a closer look at the collective variable and its scaling behaviour, visualize the effects of topological
freezing and how metadynamics helps in that respect and explore alternatives for a more efficient
building process. Possible implications for and differences to four-dimensional SU(3) theory are
briefly discussed.
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1. Introduction

In order to generate configurations in an efficient manner, one has to rely on the method of
importance sampling, the reason being that the probability of generating relevant configurations via
simple sampling decreases drastically for increasing dimensions of the phase space. Importance
sampling is usually implemented by means of Markov chain Monte Carlo algorithms, which per se
involve generating configurations that are correlated with each other. For several interesting field
theories (such as 2-dim. U(1) or 4-dim. SU(3) gauge field theories) one notices a dramatic increase
of the autocorrelation time when approaching the continuum limit. This phenomenon, which is
called topological freezing, ultimately thwarts correct measurements of observables and still poses
an active topic of research [1, 2, 3, 4, 5].

One observable which is particularly prone to topological freezing is the topological charge 𝑄,
as can be seen in Fig. 1. It can be defined in both 2-dim. U(1) and 4-dim. SU(3) field theory. We
will focus on the former case, where we can luxuriously define 𝑄 in a manner which only yields
integer values:

𝑄 =
1

2𝜋

∑︁
®𝑛∈Λ

Im
[
log(𝑃𝑡 𝑥 (®𝑛))

]
, (1)

where 𝑃𝑡 𝑥 (®𝑛) is the plaquette at the lattice site ®𝑛 = (𝑡, 𝑥)T. Since small changes of a configuration
do not always change 𝑄, there are regions in phase space where 𝑄 is constant, called topological
sectors. The troublesome increase in autocorrelation time is caused by action barriers in between
these sectors that grow for decreasing lattice spacing 𝑎, ultimately trapping the Markov chain inside.
The method of Metadynamics helps visualize and circumvent these action barriers, as can be seen
in the next section.

Figure 1: Time series of the discrete topological charge on different square lattices. The configurations were
produced using the Metropolis algorithm on a line of constant physics (LCP) given by 𝑁𝑥𝑁𝑡/𝛽 = 80. On the
finer lattice with 𝛽 = 7.2 the system visibly got stuck in a topological sector. Including instanton-updates in
between Metropolis sweeps caused the system to tunnel to different sectors again, providing a remedy.
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2. Metadynamics

For 2-dim. U(1) theory there already exist multiple methods which counteract topological
freezing, one example being instanton-updates [5, 6, 7] which involve multiplying a configuration
link by link with a ±1-instanton (plus or minus with equal probability) followed by a conventional
accept-reject step. Here a 𝑄-instanton is a configuration given by

𝑈 𝐼
𝑡 (𝑄; 𝑡, 𝑥) = exp

(
−2𝜋𝑖𝑥

𝑄

𝑁𝑡𝑁𝑥

)
,

𝑈 𝐼
𝑥 (𝑄; 𝑡, 𝑥) = exp

(
2𝜋𝑖𝑡

𝑄

𝑁𝑡

𝛿𝑥,𝑁𝑥

)
.

(2)

Consequently, every plaquette of a 𝑄-instanton configuration has the same value, such that its topo-
logical charge is 𝑄. Thus, an instanton-update proposes a configuration whose topological charge
differs by Δ𝑄 = ±1, effectively tunneling through the action barriers. In 2-dim. U(1) theory this
update is very effective when used in combination with ergodic algorithms such as the Metropolis
algorithm used here, as can be seen in Fig. 1. However, in 4-dim. SU(3) there are multiple problems,
which also holds for other topology changing algorithms [8, 9].

Metadynamics is a topology changing algorithm that also seems promising for SU(3) [8, 9]. It
involves building a bias potential 𝑉 (also called metapotential) that depends on so called collective
variables (CV) and is added onto the gauge action. The idea is to add small and local repulsive
potentials at the points in phase space (parameterized via the CVs) that the system has already
visited, thus discouraging the system from revisiting the same places again and eventually filling
up local action minima. Observables can be measured via reweighting with factors 𝑒𝑉𝑖 , see Sec. 4.

To be more specific we proceed analogously to Laio et. al [10]. We use one CV to characterize
the phase space, which we call the continuous topological charge 𝑄cont (also called meta charge and
denoted by 𝑄meta), as it is an approximation of the discrete charge and not integer-valued anymore:

𝑄cont =
1

2𝜋

∑︁
®𝑛∈Λ

Im
[
𝑃𝑡 𝑥 (®𝑛)

]
. (3)

𝑄 itself, telling us in which sector the system is currently located, is already a good means of
characterizing the phase space. For Metadynamics, however, it is necessary to have a higher
resolution, which is why 𝑄cont is the CV of choice here. In order to build up the bias potential, one
starts a run using the Metropolis algorithm, measures the CV at each point 𝑡 in Monte Carlo time
and adds a small strictly positive potential 𝑔(𝑄cont(𝑥(𝑡))) onto 𝑉 . Thus, 𝑉 is built up according to

𝑉 (𝑄cont(𝑥), 𝑡) =
∑︁
𝑡 ′<𝑡

𝑔

(
𝑄cont(𝑥) −𝑄cont

(
𝑥(𝑡′)

) )
, (4)

where 𝑥 is a point in phase space. The potential is stored on a 𝑄cont-grid of resolution 𝛿𝑄. It is
important that 𝑔 vanishes rapidly for large absolute values of its argument; we used triangles of
height 𝑤, which is a little cheaper than e.g. 𝑔(𝑄) = 𝑤 · exp

(
−𝑄2

2𝛿𝑄

)
, which has also been used before

[10]. An example of a bias potential as well as a demonstration of principle can be seen in Fig. 2.
The values used here are 𝑤 = 10−4 and 𝛿𝑄 = 10−2.
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(a) 32 × 32-lattice with 𝛽 = 12.8 (b) Measurement of ⟨𝑄2⟩ for different 𝛽

Figure 2: (a) Shows snapshots of the metapotential taken at different times during the building process.
For comparison the maximum value was subtracted at each time. In (b) measurements of ⟨𝑄2⟩ using
Metadynamics are compared with the analytical prediction [11]. The 𝑝-value is 𝑝 = 97.8% and 𝜒2/dof =
7.02/6 = 1.17.

3. Renormalization Constant 𝑍

When plotting the bias potential as in Fig. 2(a), the extrema apparently do not align with the
integer values on the 𝑄cont-axis. This is to be expected, since the local action minima lie at 𝑄-
instanton configurations, and for their continuous and discrete charges one can quickly see by use
of Eqs. (2) and (3) that for fixed instanton charge 𝑄insta holds |𝑄cont, insta | ≤ |𝑄insta |. 1

We measured pairs of (𝑄,𝑄cont) of configurations generated with the Metropolis algorithm
infused with instanton-updates on various lattice sizes and plotted them in 2D histograms as in
Fig. 3(a). The means of the 𝑄cont-distributions corresponding to one 𝑄-value each could be fitted
by a linear function of 𝑄, see Fig. 3(b).

As a consequence of the definition of 𝑄cont, the slope in Fig. 3(b) is less than one. We call its
inverse the renormalization constant 𝑍 , since multiplying 𝑄cont with 𝑍 leads to the mean values of
the 𝑄cont-distributions aligning with their respective integer values. Hence, considering 𝑍 · 𝑄cont

instead of 𝑄cont leads to the extrema of the bias potential aligning with (half-) integer values as can
be seen in Fig. 4.

The fitting function we found to describe 𝑍 best as a function of the lattice spacing 𝑎 is

𝑍 fit(𝑎) = (1.001 ± 0.001) + (33.50 ± 2.78) 𝑎2 + (9431 ± 866) 𝑎4, (5)

although, apart from polynomial functions, also exponential and Padé ansatzes have been looked
into. Note that the limit lim𝑎→0 𝑍 (𝑎) = 1 is an important check for consistency as 𝑄 and 𝑄cont both
have the same continuum limit. The dependency of 𝑍 on only even powers of 𝑎 is to be expected
since the presence of 𝑎 raised to uneven powers would break the symmetry of the topological charge
distribution.

1In fact, one can swiftly calculate that 𝑄cont, insta has a sinusoidal behaviour with a period of (𝑁𝑥𝑁𝑡 )−1.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
2
5
3

Metadynamics Surfing on Topology Barriers in the Schwinger Model Philip Rouenhoff

(a) 2D histograms of (𝑄,𝑄cont)-pairs (b) Linear fit through (𝑄,𝑄cont)-pairs

Figure 3: Measurements on a (12 × 12)-lattice with 𝛽 = 1.8. This is the coarsest lattice used, for finer
lattices the widths of the distributions in (a) quickly decrease while the slopes in (b) approach one.

(a) Without multiplying with 𝑍 (b) With multiplying with 𝑍

Figure 4: Due to the scaling of the continuous charge one cannot directly compare metapotentials of different
𝛽’s of the same LCP: one has to multiply the 𝑄cont-values with their respective 𝑍-factors.

4. Effective Sample Size

Modifying the action with the bias potential results in sampling configurations according to
a different probability distribution than that of the underlying theory. Consequently, as mentioned
before, one has to make use of reweighting when measuring observables. In our case, the weights
are obtained using the bias potential entries of the 𝑖-th ensemble member via 𝑤𝑖 = exp

(
𝑉 (𝑄cont,𝑖)

)
,

leading to

⟨𝑂⟩ =
∑

𝑖 𝑂𝑖 exp
(
𝑉 (𝑄cont,𝑖)

)∑
𝑖 exp

(
𝑉 (𝑄cont,𝑖)

) . (6)
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This results in a different effective sampling size 𝑛eff, which can be calculated via

𝑛eff =
(∑𝑖 𝑤𝑖)2∑

𝑖 𝑤
2
𝑖

. (7)

This has been done for the bias potentials on various lattice sizes, the results can be found in Tab. 1.

𝑁 𝛽 𝑛eff ratio 𝜏int

20 5.0 1955671 0.19559 7357
24 7.2 941015 0.09411 13881
28 9.8 643229 0.06433 12832
32 12.8 614815 0.06149 12605
36 16.2 307691 0.03077 17518
40 20.0 182351 0.01824 33192

Table 1: Effective sample sizes as per Eq. (7). 107 configurations were generated on lattices of different
𝑁 = 𝑁𝑡 = 𝑁𝑥 on the same LCP. The integrated autocorrelation time was determined using ⟨𝑄2⟩.

To avoid sampling regions of unnecessarily high 𝑄cont, a penalty potential was used such that
the generation of configurations with |𝑄cont | ≥ 7.0 was heavily suppressed. Yet the measured 𝑛eff

turn out to be comparatively small, highlighting one shortcoming of Metadynamics. To that end
one can enhance the procedure by adapting the height 𝑤 of the small local potentials 𝑔(𝑄cont)
dynamically, i.e. 𝑤 → 𝑤(𝑡), such that 𝑤(𝑡) decreases over Monte Carlo time. This approach is
referred to as well-tempered Metadynamics [12] and has been shown to provide relief.

5. Fitting Attempts

(a) 20 × 20-lattice with 𝛽 = 5.0 (b) 40 × 40-lattice with 𝛽 = 20.0

Figure 5: Using the naive fitting function 𝐹 (𝑄cont) = 𝐴𝑄2
cont + 𝐵 sin2 (𝐶𝑄cont) to describe the bias potential

does not yield satisfactory results for any lattice size.

6
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One drawback of Metadynamics is the circumstance that a bias potential has to be built up
for every lattice size separately, leading to an increase of computational costs. Knowing the bias
potential in advance would thus impose a significant improvement. Even an estimate can be of
advantage, since small corrections can be implemented via a shortened building run. We are
currently performing fits of already built up bias potentials in hopes of finding a pattern of the fit
parameters for different lattice sizes on the same LCP.

(a) (b)

(c) (d)

Figure 6: Illustration of the fitting process using Fourier transforms. First, parabolas 𝑝2𝑥
2 and 𝑝0 + 𝑝2𝑥

2

were fitted to the maxima and minima, respectively, as seen in (a). Since their 𝑝2-parameters are compatible
with each other in almost all of the cases, the parabola avg(𝑝2)𝑥2 was subtracted, which yields the signal seen
in (b). There one can also see that a single sin2-term still does not suffice. The most relevant frequencies can
be seen in (c), which were the proposals for the fit in (d).

While Laio et al. [10] showed that a fit of the form 𝐹 (𝑄cont) = 𝐴𝑄2
cont + 𝐵 sin2(𝜋𝑄cont)

described the model of their choice well, we find that this function is insufficient in 2-dim. U(1)-
theory: firstly, the phase velocity must be modified by the 𝑍-factor since here the local action minima
lay in vicinity of 𝑄-instanton configurations, which are defined using the discrete charge, not the
continuous one; secondly, in our case it seems that for coarse lattices the fitting function consistently

7
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under- and for finer lattices overestimates the potential barriers. Both of these observations are
illustrated in Fig. 5.

Using multiple sin2(𝜋 𝑓𝑖𝑄) -terms with frequencies 𝑓𝑖 determined via a discrete Fourier trans-
form yields a better result. The fitting process used here is displayed in more detail in Fig. 6. To
outline, parabolas were fitted to the extrema of the bias potentials in order to subtract them so as
to receive a signal more suited for a Fourier transform. The frequency spectrum can be seen in
Fig. 6(c) and turned out to be mostly composed of one ground frequency close to the aforemen-
tioned 𝐶-parameters and its following one to two harmonics. These frequencies were then used as
proposals for 𝑓𝑖 in fitting functions of the form

𝐹′(𝑄cont) = 𝐴′𝑄2
cont +

2 or 3∑︁
𝑖=1

𝐵𝑖 sin2(𝜋 𝑓𝑖𝑄cont), (8)

where 𝐴′, 𝐵𝑖 and 𝑓𝑖 are fit parameters. We present our results for the case 𝑖 ∈ {1, 2, 3} and note that
the transition from 𝑖 ∈ {1, 2} to 𝑖 ∈ {1, 2, 3} did not produce different results for 𝐵1, 𝑓1 and 𝑓2, but
did so for 𝐵2. The frequencies determined for different lattice sizes can be seen in Fig. 7(a). There
it can be seen that for finer lattices, the frequencies roughly coincide with the prediction delivered
by the renormalization constant 𝑍 (𝑎).

(a) 𝑓𝑖 for various lattices (b) Preliminary 𝐵𝑖 for various lattices

Figure 7: In (a) the frequencies 𝑓𝑖 from the fitting function Eq. (8) are plotted over 𝑎. One can see that
for fixed 𝑎 the frequencies 𝑓2 and 𝑓3 roughly match the first two harmonics of 𝑓1 and additionally, that the
frequencies coincide with (multiples of) 𝑍 (𝑎) for small 𝑎. (b) shows preliminary results for the amplitudes
𝐵𝑖 .

Fig. 7(b) shows the preliminary results for the fitted amplitudes 𝐵𝑖 . The growth of 𝐵1 for
decreasing 𝑎 clearly shows the growth of the action barriers when approaching the continuum, as
we already knew. For 𝐵2 and 𝐵3 one can see that while for coarse lattices both of the amplitudes
are comparatively small, for finer lattices 𝐵2 seems to grow. One can surmise that for finer lattices
𝐵3 will follow this behaviour and become more relevant as well.

8
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6. Conclusion

In 2-dim. U(1) gauge theory the approach of Metadynamics seems to be a successful remedy
for topological freezing. One drawback of this method, the building process, is attempted to be
circumvented by the search of suitable fitting functions for the bias potentials. One function that
yields a satisfactory result is

𝐹′(𝑄cont) = 𝐴′𝑄2
cont +

2 or 3∑︁
𝑖=1

𝐵𝑖 sin2(𝜋 𝑓𝑖𝑄cont),

where a Fourier analysis of the bias potential showed that the frequencies 𝑓1, 𝑓2, 𝑓3 approximately
fulfill 𝑓𝑖 = 𝑖 · 𝑓1. For each lattice the ground frequency 𝑓1 can be obtained via the renormalization
constant 𝑍 (𝑎), which in turn can be determined by examining the collective variable 𝑄cont.

While instanton-updates and several other methods would also work here, Metadynamics is
an ansatz which also seems promising for 4-dim. SU(3) theory [8, 9]. In the future, we plan
to investigate bias potentials in that theory analogously to the way presented here. Additionally,
in hopes of improving the effective sample size, we plan to experiment with different building
strategies, such as well-tempered Metadynamics [12] or other dynamical building methods. More
generally, we intend to look into using other CVs in addition to𝑄cont. What would also be interesting
to see is if one can extract modes from the Markov chain which couple to the autocorrelation
time by use of the generalized eigenvalue problem. Should one find observables with larger
autocorrelation times than those of 𝑄, one could (amongst other things) customize interesting CVs
for Metadynamics.
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