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1. Introduction

Lattice QCD calculations entered the precision era. This statement is certainly true but we need to
elaborate a bit on it to better appreciate its meaning and, more importantly, in order to understand
its consequences.

By precision we mean sub-percent accuracy and by lattice QCD calculations we mean a restricted set
of hadronic observables, the so-called gold-plated quantities. There are many interesting hadronic
observables, such as those associated with processes involving more than a single hadron in the
initial and/or the external state, on which much more theoretical and numerical work is needed in
order to reach even the ten-percent level of accuracy. At the same time, a restricted set of hadronic
observables has been computed, by more than one lattice collaboration, with an overall accuracy,
statistical plus systematics, at the permille-level of accuracy (see Ref. [1] for a recent review).
Gold-plated observables include stable hadron masses and also phenomenologically very relevant
quantities such as the renormalized strong coupling constant, renormalized quark masses, leptonic
and semileptonic decay rates of pseudoscalar mesons, and so on.

The price that has to be payed in order to live in the precision era, i.e. to further improve the accuracy
on gold-plated quantities, is the inclusion of QED radiative corrections and strong isospin breaking
(SIB) effects in non-perturbative lattice calculations. In fact, the theory expected to describe the
hadronic universe at the sub-percent level of accuracy is QCD+QED. Consequently, QCD has to be
considered an approximation at this level of precision, although an excellent one.

The necessity of performing lattice simulations of QCD+QED has been, by now, fully recognized
by the lattice community. Starting from the pioneering simulations of Ref. [2], a huge amount of
work has been done in order to cope with the subtle numerical and theoretical issues associated
with the inclusion of electromagnetic interactions in finite-volume lattice simulations. A critical
and exhaustive discussion of all these works goes far beyond the scope of this talk (see Refs. [3–35]
for a largely incomplete list of references). Therefore, in the following, I concentrate on the main
subjects of this talk, i.e. the theoretical aspects of the matching of lattice QCD+QED to Nature and
of the scheme ambiguities arising in the definition of QCD as an approximate theory.

By working under the assumption that QCD+QED is the fundamental theory, its matching to
Nature is unambiguous and the choice of the experimental observables to be used as inputs of the
matching procedure is a matter of numerical convenience. On the contrary, by considering QCD
as an approximate theory, different choices of the external inputs used to tune the parameters of the
theory correspond to different schemes for the definition of what we call QCD. At the sub-percent
level of precision QCD results and QED radiative corrections obtained in different schemes cannot
be compared. Since (slightly) different schemes have been adopted in the past by the different lattice
collaborations [1], the issue is becoming increasingly relevant and has attracted a lot of attention
(see for example Refs. [7, 8, 36–41] and also the contribution of A. Portelli at this conference).
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Figure 1: Illustration of the matching algorithm in the case of a generic theory.

2. Setting the stage

The first step of any quantum field theory (QFT) calculation, aiming at phenomenological predic-
tions, is the matching of the theory to Nature. A renormalizable theory depending upon 𝑁 bare
parameters can describe R𝑁 Universes. The matching “algorithm”, also known as renormalization,
selects the one in which we live. The algorithm is illustrated in Figure 1 in the case of a generic
theory and we are now going to describe it:

• we start (top-left rectangle) with the classical action 𝑆( ®𝑔) of our theory, depending upon 𝑁

bare parameters collected into the vector ®𝑔;

• the theory needs to be regularized and we do it by going on the lattice. The lattice action
𝑆𝑎,𝐿 ( ®𝑔) (top-center rectangle) depends upon the lattice spacing 𝑎 and the finite volume 𝐿

that regularize the theory, respectively, in the ultraviolet (UV) and in the infrared (IR);

• we can now (assuming that we have access to a supercomputer) start our calculations. By
making educated guesses, we chose some values for our 𝑁 bare parameters, fix the number
of lattice points, run the simulations and compute a collection of observables. Let’s assume
that our final goal is the calculation of a particular quantity that we call 𝜎 (bottom-left red
rectangle). For each choice of the vector ®𝑔 we thus need to compute 𝜎 but also 𝑁 additional
observables that we are not going to predict but that we will use to tune the bare parameters.
We collect these observables into the vector ®𝑅 and, at this stage, our theoretical results depend
upon the choices that we have made, i.e. we have 𝜎( ®𝑔, 𝑎, 𝐿) and ®𝑅( ®𝑔, 𝑎, 𝐿);

• here we work under the assumption that our theory is the fundamental one, i.e. it is expected
to describe our Universe, and therefore impose the matching condition (black blob),

lim
𝐿 ↦→∞

®𝑅 ( ®𝑔, 𝑎, 𝐿) = ®𝑅 , (1)

by using the experimental values for ®𝑅 on the r.h.s. (blue rectangle on the right of the blob).
If instead we want to select another Universe, we just need to choose arbitrary values for ®𝑅;

• we now solve the matching conditions w.r.t. the bare parameters at fixed UV cutoff, thus
obtaining ®𝑔( ®𝑅, 𝑎). We could live with IR-dependent bare couplings but this is a bit odd and
also unpractical and therefore we have taken the infinite-volume limit in Eq. (1);
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• we now evaluate our theoretical prediction at the matching point, i.e. 𝜎( ®𝑔( ®𝑅, 𝑎), 𝑎, 𝐿), iterate
the procedure above by choosing increasingly smaller values of the lattice spacing and, finally,
obtain our prediction for 𝜎,

lim
𝐿 ↦→∞,𝑎 ↦→0

𝜎

(
®𝑔( ®𝑅, 𝑎), 𝑎, 𝐿

)
= 𝜎( ®𝑅) . (2)

As already stressed, this is just renormalization theory and, therefore, there is nothing new in the
discussion of this section. In fact almost nothing is new in the whole talk. Nevertheless, because of
the peculiarities of QCD+QED and of the way we usually do things on the lattice, there are some
delicate points on which it might be helpful to elaborate a bit more. We will do this in the following
subsections.

2.1 Renormalized couplings, theory scales, lines of constant physics and all that

Up to now we have been discussing renormalization theory without mentioning renormalized
couplings. The external inputs have been used, at fixed UV cutoff, to tune directly the bare
parameters. This is what we usually do on the lattice. On the other hand, renormalized couplings
play a prominent rôle in any textbook discussion of renormalization theory and, in fact, can be very
useful also on the lattice, at least from the practical/numerical point of view.

There is no conceptual difference between the so-called theory scales and the renormalized cou-
plings. These are quantities that cannot be directly measured in experiments but that can be defined
and computed theoretically. In fact, if we can compute a theoretical quantity on the lattice with
high accuracy we can then profitably use it to define the so-called lines of constant physics.

The important point to be noticed is that the very same Universe can be selected by using different,
but consistent, external inputs. Let’s assume that we use ®𝑅 to match our theory and then, together
with 𝜎, we predict 𝑁 additional observables

®𝑅 −→ ®𝑔( ®𝑅, 𝑎) −→
{
𝜎( ®𝑅) , ®𝑆 = ®𝑆( ®𝑅)

}
. (3)

If instead of ®𝑅 we now use ®𝑆 to match the theory we have

®𝑆 −→ ®𝑔( ®𝑆, 𝑎) −→
{
𝜎( ®𝑆) , ®𝑅( ®𝑆)

}
. (4)

In any healthy and consistent theory we must have ®𝑅( ®𝑆) = ®𝑅 and, therefore, the same line of
constant physics, 𝜎( ®𝑆) = 𝜎( ®𝑅). Of course, if the theory is expected to describe our Universe then
we must have ®𝑅( ®𝑆exp) = ®𝑅exp. If this doesn’t happen we have discovered new physics. On the other
hand, once QCD is considered an approximation of the real Universe, lattice QCD results cannot
be expected to reproduce the experimental observations and to be independent from the matching
observables. This dependence is at the origin of the scheme ambiguities arising in the definition of
QCD and we will discuss them in section 4.

Let’s now assume that we can compute 𝑁 quantities that have a well defined continuum and
infinite-volume limit but that cannot be directly measured in experiments. For example, we might
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want to compute renormalized quark masses �̂� 𝑓 (𝜇) in a given scheme and at a given scale 𝜇,
the renormalized fine structure constant �̂�em(𝜇), the gradient-flow scales 𝑡0 [42] and 𝑤0 [43],
unphysical meson masses (𝑀Γ

𝜓𝜓
) extracted from the fermion-connected Wick contractions of two-

point Euclidean correlators of �̄�Γ𝜓 interpolating operators, and so on. Let’s collect these 𝑁

quantities in a vector that we call ®𝐺. The idea here is to start exploring unphysical Universes by
prescribing arbitrary values for ®𝐺, to take the continuum limit and in the end to match our theory to
Nature by dealing with UV-finite quantities. This is actually the way renormalization is explained
in QFT textbooks. To do this we first tune the bare parameters at fixed ®𝐺,

lim
𝐿 ↦→∞

®𝐺 ( ®𝑔, 𝑎, 𝐿) = ®𝐺 −→ ®𝑔( ®𝐺, 𝑎) . (5)

This defines the lines of constant physics corresponding to the selected values of ®𝐺. We than take
the continuum limit on these lines,

lim
𝐿 ↦→∞,𝑎 ↦→0

®𝑅
(
®𝑔( ®𝐺, 𝑎), 𝑎, 𝐿

)
= ®𝑅( ®𝐺) , lim

𝐿 ↦→∞,𝑎 ↦→0
𝜎

(
®𝑔( ®𝐺, 𝑎), 𝑎, 𝐿

)
= 𝜎( ®𝐺) . (6)

In this way we are trading the dependence of the measurable observables ®𝑅 and 𝜎 upon the bare
parameters (at fixed UV cutoff) with the dependence upon ®𝐺 (in the continuum) and, as a matter
of fact, the quantities ®𝐺 act as renormalized couplings. At this point we can impose the matching
conditions in the continuum by solving

®𝑅( ®𝐺) = ®𝑅exp −→ ®𝐺 ( ®𝑅exp) , (7)

and reach our final goal, i.e. to predict 𝜎( ®𝑅exp) ≡ 𝜎( ®𝐺 ( ®𝑅exp)).

The following important observation, being rather obvious, is usually left implicit. The tuning of
the renormalized parameters with experimental inputs has to be done, once in history at least! It
is this step that matches the theory to our Universe. It is this step that removes all the ambiguities,
associated with the choice of the observables ®𝐺, that seem to be present in the renormalization
procedure. If someone, once upon a time, solved Eq. (7) for us, we can then select the line of
constant physics corresponding to our Universe by using its solution ®𝐺 ( ®𝑅exp) in the matching of our
lattice simulations. This might be particularly convenient from the numerical viewpoint, depending
on how precisely we are able to compute the chosen theoretical observables ®𝐺.

2.2 Lattice QCD+QED and asymptotic freedom

We now consider our theory.

The bare parameters of QCD+QED are the strong coupling constant 𝑔𝑠, the (squared) electric charge
𝑒2 and the 𝑛 𝑓 quark masses, where 𝑛 𝑓 is the number of dynamical flavours. At the current level of
precision, as far as low-energy observables are concerned, the effects associated with propagating
bottom and top quarks can safely be neglected. Therefore, by simulating on the lattice QCD+QED
with dynamical up, down, strange and charm quarks, any observable will depend upon six bare
parameters as well as on the lattice spacing and on the lattice volume.

5
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Figure 2: Illustration of the matching algorithm in the case of an asymptotically free theory in which the
bare coupling 𝑔𝑠 vanishes in the 𝑎 ↦→ 0 limit. The other bare couplings and the lattice spacing are collected
into the vector ®𝑥, see Eq. (8).

In order to avoid lengthy expressions, such as [𝑎𝑀𝑝] (𝑔𝑠, 𝑒2, 𝑎𝑚𝑢, 𝑎𝑚𝑑 , 𝑎𝑚𝑠, 𝑎𝑚𝑐, 𝑎, 𝐿) where
𝑎𝑀𝑝 is the proton mass and 𝑎𝑚 𝑓 are the bare quark masses expressed in lattice units, we could
use the vector of the bare couplings ®𝑔 = (𝑔𝑠, 𝑒2, 𝑎𝑚𝑢, 𝑎𝑚𝑑 , 𝑎𝑚𝑠, 𝑎𝑚𝑐) introduced in the previous
sections. In the discussion that follows, however, it is more convenient to introduce

®𝑥 =

(
𝑒2, 𝑎𝑚𝑢, 𝑎𝑚𝑑 , 𝑎𝑚𝑠, 𝑎𝑚𝑐, 𝑎

)
(8)

and use the compact notation [𝑎𝑀𝑝] (𝑔𝑠, ®𝑥, 𝐿).

In section 2 we emphasized that in order to implement the matching algorithm we need to chose
increasingly smaller values for the lattice spacing. This might sound quite strange to a novice lattice
practitioner (Simplicio), used to think that the lattice spacing has to be determined. In fact a moment
of thought reveals that nothing prevent us from choosing the value of the UV cutoff. Although
by working in lattice units we have in our hands dimensionless quantities, say [𝑎𝑀𝑝] (𝑔𝑠, ®𝑥, 𝐿),
once the value of the lattice spacing has been chosen, say 1/𝑎 = 4 GeV, these quantities can
easily be expressed in physical units, 𝑀𝑝 (𝑔𝑠, ®𝑥, 𝐿) = 4 × [𝑎𝑀𝑝] (𝑔𝑠, ®𝑥, 𝐿) GeV, and used in the
matching conditions, with 𝑀

exp
𝑝 , to determine ®𝑔( ®𝑅, 𝑎). This is certainly possible but (for numerical

convenience?) we usually prefer to follow a different route.

By relying on asymptotic freedom, instead of choosing the value of the lattice spacing we prefer to
choose the value of the bare strong coupling 𝑔𝑠 . We then use the matching conditions to fix the
remaining bare parameters and the lattice spacing,

lim
𝐿 ↦→∞

®𝑅 (𝑔𝑠, ®𝑥, 𝐿) = ®𝑅 , ↦−→ ®𝑥( ®𝑅, 𝑔𝑠) . (9)

In this modified matching procedure, that is possible in the first place only because strong interactions
are asymptotically free (see Figure 2), the lattice spacing is actually determined. Increasingly smaller
values of the lattice spacing are obtained by relying on the fact that

lim
𝑔𝑠 ↦→0

𝑎( ®𝑅, 𝑔𝑠) = 0 , (10)

6
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and theoretical predictions are finally obtained by taking the continuum and infinite-volume limits
according to

lim
𝐿 ↦→∞,𝑔𝑠 ↦→0

𝜎

(
𝑔𝑠, ®𝑥( ®𝑅, 𝑔𝑠), 𝐿

)
= 𝜎( ®𝑅) . (11)

3. How do we chose the matching observables?

Under the assumption that the theory is the fundamental one, QCD+QED in our case, the choice of
the observables to be used in the matching conditions is a matter of computational convenience.

Let’s go back to Eq (9). Both the experimental inputs (r.h.s.) and the lattice calculations (l.h.s.)
are unavoidably affected by errors. These errors propagate on the tuned bare parameters and on the
lattice spacing, ®𝑥( ®𝑅, 𝑔𝑠), and in the end on any theoretical prediction. The experimental precision
is usually not a problem in this game. The theoretical precision might instead be an issue and,
therefore, we are used to chose the matching observables among the hadronic quantities that can be
computed on the lattice easily and precisely.

At this point Simplicio immediately thinks to pseudoscalar meson masses, to the leptonic decay
constants of charged pions ( 𝑓𝜋) and kaons ( 𝑓𝐾 ) and to the masses of the nucleons and of the
Ω− baryons. These are indeed the quantities that have been commonly adopted in the matching
procedure of QCD to Nature under the assumption that QED and SIB corrections are negligible,
see Ref. [1]. In particular, 𝑓𝜋 and 𝑓𝐾 have usually been preferred to baryon masses because of the
well known problem of the exponential degradation of the signal-to-noise ratio at large Euclidean
times affecting baryon correlators.

The situation needs to be reconsidered in QCD+QED. By turning-on electromagnetic interactions
massless particles appear into the spectrum, the photons, and observables that we are used to
compute precisely and efficiently in QCD might become much more cumbersome in QCD+QED.

This is certainly the case of decay rates. Propagating virtual photons generate log(𝐿) infrared-
divergent terms at intermediate stages of the calculation of 𝑆-matrix elements that, according to
the well-known Bloch and Nordsieck mechanism [44], cancel in the measurable observable by also
considering processes with real photons in the final state. The infrared-safe measurable quantity
associated with the process 𝜋+ ↦→ 𝜇+𝜈𝜇 (𝛾) is the decay rate Γ

[
𝜋+ ↦→ 𝜇+𝜈𝜇 (𝛾), 𝐸𝛾

]
, inclusive on

the number of real photons in the final state with total energy 𝐸𝛾 . The quantity that in QCD+QED
corresponds to what we call 𝑓𝜋 in QCD (in the limit in which electromagnetic interactions are
turned-off) is

F𝜋 (𝐸𝛾) =

√√√√√√√√ Γ
[
𝜋+ ↦→ 𝜇+𝜈𝜇 (𝛾), 𝐸𝛾

]
𝐺2

𝐹

8𝜋 |𝑉𝑢𝑑 |2𝑀
exp
𝜋+ (𝑀

exp
𝜇 )2

[
1 −

(
𝑀

exp
𝜇

𝑀
exp
𝜋+

)2
] , (12)

where 𝐺𝐹 is the Fermi constant and𝑉𝑢𝑑 is the CKM matrix element. On the one hand, F𝜋 (𝐸𝛾) and
F𝐾 (𝐸𝛾) can be [15, 17, 18, 31] and have been [38, 41, 45] computed on the lattice. On the other
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hand, since the calculation is much more involved than in the QCD case and, more importantly,
since prior knowledge of the relevant CKM matrix elements is required, I’m firmly convinced that
using F𝜋 (𝐸𝛾) and/or F𝐾 (𝐸𝛾) as matching observables is a very bad idea!

Stable hadron masses are infrared safe quantities. Nevertheless, finite-volume effects on stable
charged hadron masses are suppressed only as inverse powers of the volume in QCD+QED while
they vanish exponentially fast in QCD. In the so-called QCD+QEDL and QCD+QEDC finite-volume
formulations of the theory it is possible, by using the formulae of Ref. [10, 11], to remove analytically
the leading 𝑂 (𝑒2/𝐿) and 𝑂 (𝑒2/𝐿2) finite-volume effects that are universal, i.e. depend only on the
electric charge and on the mass of the hadron but not on its internal structure. The remaining non-
universal structure-dependent finite-volume effects have to be removed by performing a numerical
extrapolation (the 𝐿 ↦→ ∞ limit appearing in Eq. (9)).

There is another important point, again associated with the presence of photons into the spectrum,
that must be taken into account concerning the calculation of stable hadron masses in lattice
QCD+QED. In QCD stable hadrons are true eigenstates of the Hamiltonian, also in the infinite
volume. Let’s consider a charged pion. At vanishing spatial momentum, 𝑀𝜋+ is the eigenvalue of
the QCD Hamiltonian and, in this channel, the continuum part of the spectrum starts at 𝑀𝜋+ +2𝑀𝜋0 .
In QCD+QED, since this is a flavored channel, we still have a gap from the vacuum but, because
of the presence of states such as 𝜋+ + 𝛾, the continuum part of the spectrum starts exactly at 𝑀𝜋+ .
This fact, on the long run, will have important implications on the way we usually compute hadron
masses on the lattice, i.e. the so-called effective-mass analysis. Indeed, while in lattice QCD the
charged-pion effective-mass converges at large Euclidean times to 𝑀𝜋+ with leading corrections
proportional to exp(−2𝑀𝜋0 𝑡), in QCD+QED the corrections are exp(−𝐸min

𝛾 𝑡) where 𝐸min
𝛾 ∼ 1/𝐿

is different from zero only because of the finite-volume quantization of the spectrum. On the
volumes that have been explored so far numerical evidences that stable hadron masses can be
precisely computed in lattice QCD+QED have been provided in many works (see for example the
current state-of-the-art calculation of the baryon spectrum [10] and Refs. [46, 47] were, although
at unphysical quark masses, a fully gauge-invariant approach has been used). On asymptotically
large volumes, approaches based on spectral-reconstruction techniques [48, 49] might turn helpful
in this game.

In light of the previous observations, two examples of possible choices for the matching observables
are given by

®𝑅 =

(
𝑀2
𝜋+

𝑀2
𝐾0

,
𝑀2
𝐷+

𝑀2
𝐾0

,
𝑀2
𝐷𝑠

𝑀2
𝐾0

, 𝑀𝐾0 ,
𝑀2
𝐾+ − 𝑀2

𝐾0

𝑀2
𝐾0

,
𝑀2
𝐷+ − 𝑀2

𝐷0

𝑀2
𝐾0

)
,

®𝑅 =

(
𝑀2
𝜋+

𝑀2
Ω−

,
𝑀2
𝐾0

𝑀2
Ω−

,
𝑀2
𝐷𝑠

𝑀2
Ω−

, 𝑀Ω− ,
𝑀2
𝐾+ − 𝑀2

𝐾0

𝑀2
Ω−

,
𝑀2
𝐷+ − 𝑀2

𝐷0

𝑀2
Ω−

)
. (13)

In both cases, as customary, we have considered dimensionless ratios and a single dimensional
quantity that, in the lattice jargon, is the one that sets the scale. The mass differences 𝑀2

𝐾+ − 𝑀2
𝐾0

and 𝑀2
𝐷+ − 𝑀2

𝐷0 , that vanish in the isospin symmetric limit, are the more sensitive quantities to
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the isospin breaking (IB) bare parameters 𝑒2 and 𝑎𝑚𝑢 − 𝑎𝑚𝑑 . In the first case baryon masses are
avoided at the price of inducing a strong dependence of light quark masses and of the lattice spacing
upon charmed meson masses and, thus, potentially large cutoff effects. The second case is the
one that, perhaps, can be considered the natural choice but, maybe, it could be better to consider a
different baryon, such as the proton or the Ξ (see e.g. Refs. [39, 50–52])). This discussion can be
continued forever. . . and therefore we stop it here!

4. QCD is an approximation

QCD and QCD+QED are two different theories, both in the IR and in the UV.

In the previous section we have been mostly concerned with the different IR behaviors. In this
section we are going to address the issue of the definition of QCD as an approximate theory and we
need to take in due consideration the fact that the two theories have different UV divergences. The
issue becomes subtle because isospin symmetric QCD (isoQCD) is an excellent approximation of
the hadronic Universe and, therefore, QED and SIB effects on physical quantities are small. This is
not automatic though, it depends on how we define the bare parameters of (iso)QCD that, because
of the different UV divergences, are infinitely different from the corresponding ones of QCD+QED.

In order to avoid lengthy expressions we need, again, to introduce a convenient notation. Let’s
introduce the vectors

®𝑦 =

(
𝑎,

𝑎𝑚𝑢 + 𝑎𝑚𝑑

2
, 𝑎𝑚𝑠, 𝑎𝑚𝑐

)
, ®𝑧 =

(𝑎𝑚𝑢 − 𝑎𝑚𝑑

2
, 𝑒2

)
. (14)

At fixed UV and IR cutoffs, any QCD+QED observable, say 𝜎, depends upon the volume 𝐿, the
bare strong coupling constant 𝑔𝑠, the lattice spacing 𝑎, the bare iso-symmetric light quark mass
𝑎𝑚𝑢𝑑 = (𝑎𝑚𝑢 + 𝑎𝑚𝑑)/2, the strange and charm bare masses as well as on the IB light quark mass
difference (𝑎𝑚𝑢 − 𝑎𝑚𝑑)/2 and the bare electric charge squared 𝑒2, i.e. 𝜎(𝑔𝑠, ®𝑦, ®𝑧, 𝐿). The same
observable in isoQCD is obtained by setting to zero the IB bare parameters collected into the vector
®𝑧, i.e. 𝜎(𝑔𝑠, ®𝑦, ®0, 𝐿).

Let’s now assume that in order to match QCD+QED we choose, for the needed six experimental
inputs, the second line of Eqs. (13) and let’s split the corresponding vector ®𝑅 as follows

®𝑅 =

(
®𝑅0, ®𝑅1

)
, ®𝑅0 =

(
𝑀2
𝜋+

𝑀2
Ω−

,
𝑀2
𝐾0

𝑀2
Ω−

,
𝑀2
𝐷𝑠

𝑀2
Ω−

, 𝑀Ω−

)
®𝑅1 =

(
𝑀2
𝐾+ − 𝑀2

𝐾0

𝑀2
Ω−

,
𝑀2
𝐷+ − 𝑀2

𝐷0

𝑀2
Ω−

)
.

(15)

At this point we have all the ingredients to discuss the definition of isoQCD and of the associated
QED and SIB corrections.

Let’s start by considering again QCD+QED but, this time, let’s implement the matching algorithm

9
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of subsection 2.1 by splitting it into two separate steps, according to

lim
𝐿 ↦→∞

®𝑅0 (𝑔𝑠, ®𝑦, ®𝑧, 𝐿) = ®𝑅0 , ↦−→ ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧) , (16)

lim
𝐿 ↦→∞

®𝑅1

(
𝑔𝑠, ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧), ®𝑧, 𝐿

)
= ®𝑅1 , ↦−→


®𝑧( ®𝑅, 𝑔𝑠)

®𝑦
(
®𝑅0, 𝑔𝑠, ®𝑧( ®𝑅, 𝑔𝑠)

) . (17)

In the first step, Eq. (16), we solve the system of four equations at fixed values of 𝑔𝑠 and of the
IB bare couplings ®𝑧, thus obtaining the lattice spacing and the three iso-symmetric quark masses
®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧). In the second step, Eq. (17), we complete the matching by using the solution of the
first step and by solving the remaining two equations w.r.t. the IB bare couplings. This gives us
®𝑧( ®𝑅, 𝑔𝑠) that we then use in order to get ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧( ®𝑅, 𝑔𝑠)). Since we assume here that there is no
new physics, our predictions

lim
𝐿 ↦→∞,𝑔𝑠 ↦→0

𝜎

(
𝑔𝑠, ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧( ®𝑅, 𝑔𝑠)), ®𝑧( ®𝑅, 𝑔𝑠), 𝐿

)
= 𝜎Nature (18)

will not depend upon the choice of the experimental quantities ®𝑅 that we used in the matching
procedure.

At this point we introduce an additional step, the definition of isoQCD. Since we want to be fully
general, we consider a new iso-symmetric input vector, let’s call it ®𝑆0. The entries of this vector may
or may not coincide with ®𝑅0, may be the experimental values of measurable quantities or theory
scales. By using this input vector we implement the first step of the matching algorithm with ®𝑧 = ®0,

lim
𝐿 ↦→∞

®𝑆0

(
𝑔𝑠, ®𝑦, ®0, 𝐿

)
= ®𝑆0 , ↦−→ ®𝑦( ®𝑆0, 𝑔𝑠, ®0) . (19)

Once we know the iso-symmetric quark masses and the iso-symmetric lattice spacing we can
compute any observable in isoQCD, e.g.

lim
𝐿 ↦→∞,𝑔𝑠 ↦→0

𝜎

(
𝑔𝑠, ®𝑦( ®𝑆0, 𝑔𝑠, ®0), ®0, 𝐿

)
= 𝜎isoQCD( ®𝑆0) . (20)

Our isoQCD prediction 𝜎isoQCD( ®𝑆0) does depend upon our choice of the input vector ®𝑆0 and,
consequently, also the QED and SIB corrections

Δ𝜎IB( ®𝑆0) ≡ 𝜎Nature − 𝜎isoQCD( ®𝑆0) (21)

do depend upon the prescription that we adopted to define isoQCD.

Although there is no theoretical constraint on the input vector ®𝑆0, a totally arbitrary choice cannot
correspond to a definition of isoQCD that is a good approximation of the hadronic Universe. In
practice we have to use quantities that we know from experiments or from a theoretical QCD+QED
calculation that we, or a friend of us, did in the past. For example, we could use the same quantities
defining the vector ®𝑅0 in Eq. (15) but, since in isoQCD all pions and kaons have the same mass and

10
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are stable, we could e.g. use 𝑀𝜋0 instead of 𝑀𝜋+ and (𝑀𝐾0 + 𝑀𝐾+)/2 instead of 𝑀𝐾0 . A moment
of thought reveals that, in fact, there is no loss of generality if we write

®𝑆0 ≡ ®𝑅0 + ®𝜀 , ®𝜀 = O(®𝑧) , (22)

where ®𝜀 is a correction vector with entries of the order of the experimentally measured IB corrections
to the hadron masses defining ®𝑅0. Indeed, as discussed in subsection 2.1, the same line of constant
physics corresponding to any given choice of ®𝑆0 can also be selected by using ®𝑅isoQCD

0 ( ®𝑆0) ≡ ®𝑅0+ ®𝜀.

4.1 à la RM123

As stressed several times, leading QED and SIB corrections must be taken into account at the
sub-percent level of accuracy. At the same time, sub-leading corrections can safely be neglected.
Moreover, leading IB corrections can be directly computed by using the so-called RM123 ap-
proach [6, 7], i.e. by expanding the lattice path integral w.r.t. the IB couplings ®𝑧. For these reasons
it is useful and instructive to elaborate a bit more on the definition of isoQCD, and of the associated
QED and SIB corrections, by expanding the previous formulae w.r.t. ®𝑧 and by neglecting terms of
O(®𝑧2). This is what we are now going to do.

Let’s start once again from QCD+QED, more precisely from Eq. (18) that we linearize w.r.t. ®𝑧,

lim
𝑔𝑠 ↦→0

𝜎
(
𝑔𝑠, ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧( ®𝑅, 𝑔𝑠)), ®0

)
+ 𝑧𝑖 ( ®𝑅, 𝑔𝑠)

𝜕𝜎

(
𝑔𝑠, ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧( ®𝑅, 𝑔𝑠)), ®𝑧

)
𝜕𝑧𝑖

�������
®𝑧=®0

 = 𝜎Nature .

(23)

In the previous expression, and also in the ones that will follow, we neglect O(®𝑧2) contributions
and, to simplify the notation, we assume that the infinite-volume limit has already been taken.

A very important remark is in order here. It is not possible to take, separately, the continuum limit
of the two terms in curly brackets on the l.h.s. of Eq. (23). Indeed,

lim
𝑔𝑠 ↦→0

𝜎

(
𝑔𝑠, ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧( ®𝑅, 𝑔𝑠)), ®0

)
= ∞ ! (24)

The different UV behaviors of isoQCD and QCD+QED come into play here. Both theories are
renormalizable and the different UV-divergences are absorbed into the different bare parameters,
resulting in turn from the different matching conditions. In order to perform, separately, the
continuum limits of the isoQCD contribution to our observable 𝜎 and of the associated QED and
SIB corrections we must use the isoQCD bare parameters and the associated counter-terms,

Δ®𝑦 = ®𝑦
(
®𝑅0, 𝑔𝑠, ®𝑧( ®𝑅, 𝑔𝑠)

)
− ®𝑦( ®𝑅0 + 𝜀, 𝑔𝑠, ®0) , (25)

i.e. the difference between the IB bare parameters of full theory and those of isoQCD. By working
à la RM123, the counter-terms can be obtained by linearizing the matching conditions of Eq. (16)
and Eq. (17). Once this has been done we can go back to Eq. (23) and split it as follows

𝜎isoQCD( ®𝑅0 + 𝜀) = lim
𝑔𝑠 ↦→0

𝜎

(
𝑔𝑠, ®𝑦( ®𝑅0 + 𝜀, 𝑔𝑠, ®0), ®0

)
, (26)

11
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and

Δ𝜎IB( ®𝑅0 + 𝜀)

= lim
𝑔𝑠 ↦→0

Δ𝑦
𝑛
𝜕𝜎

(
𝑔𝑠, ®𝑦, ®0

)
𝜕𝑦𝑛

�������
®𝑦=®𝑦 ( ®𝑅0+𝜀,𝑔𝑠 ,®0)

+ 𝑧𝑖 ( ®𝑅, 𝑔𝑠)
𝜕𝜎

(
𝑔𝑠, ®𝑦( ®𝑅0 + 𝜀, 𝑔𝑠, ®0), ®𝑧

)
𝜕𝑧𝑖

�������
®𝑧=®0

 , (27)

where both𝜎isoQCD( ®𝑅0+𝜀) andΔ𝜎IB( ®𝑅0+𝜀) have a well defined continuum limit (see Refs.[7, 53]).

At this point I really have to apologize with the reader that has been coping with a very very heavy
notation! The formulae above could have been written by partly hiding the dependence upon the
inputs and/or by giving-up the full generality that we insisted in retaining. At the end of this climb,
however, we have to be pretty satisfied. Indeed, by using our formulae we can now express the
dependence of isoQCD observables w.r.t. the prescription used to define the approximate theory in
terms of the differential equations

𝜎isoQCD( ®𝑅0 + 𝜀) − 𝜎isoQCD( ®𝑅0) = 𝜀𝑛
𝜕𝜎isoQCD( ®𝑅0)

𝜕𝑅𝑛0
, (28)

i.e. in terms of the partial derivatives of our observable 𝜎 w.r.t. the physical inputs ®𝑅0.

At the same time, by observing that we can rewrite Eq. (25) as

Δ®𝑦 = −𝜀𝑛
𝜕®𝑦( ®𝑅0, 𝑔𝑠, ®0)

𝜕𝑅𝑛0
+ 𝑧𝑖 ( ®𝑅, 𝑔𝑠)

𝜕®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧)
𝜕𝑧𝑖

�����
®𝑧=®0

= O(®𝑧) , (29)

we can safely replace ®𝑦( ®𝑅0 + 𝜀, 𝑔𝑠, ®0) with ®𝑦( ®𝑅0, 𝑔𝑠, ®0) in the expression for Δ𝜎IB( ®𝑅0 + 𝜀) given in
Eq. (27) and rewrite it as follows

Δ𝜎IB( ®𝑅0 + 𝜀) = −𝜀𝑛 𝜕𝜎
isoQCD( ®𝑅0)
𝜕𝑅𝑛0

+ Δ𝜎IB( ®𝑅0) . (30)

This expression, that we obtained by using

lim
𝑔𝑠 ↦→0

𝜕𝑦𝑚( ®𝑅0, 𝑔𝑠, ®0)
𝜕𝑅𝑛0

𝜕𝜎(𝑔𝑠, ®𝑦( ®𝑅0, 𝑔𝑠, ®0), ®0)
𝜕𝑦𝑚( ®𝑅0, 𝑔𝑠, ®0)

=
𝜕𝜎isoQCD( ®𝑅0)

𝜕𝑅𝑛0
, (31)

shows explicitly what we was expecting: the dependence upon the prescription of an isoQCD
observable (see Eq. (28)) is exactly compensated by the dependence of the corresponding IB
correction (see Eq. (30)), so that their sum is the physical quantity 𝜎Nature independently from the
choices made in order to define isoQCD!

Moreover, by noticing that

Δ𝜎IB( ®𝑅0) = lim
𝑔𝑠 ↦→0

𝑧𝑖 ( ®𝑅, 𝑔𝑠)
𝜕𝜎

(
𝑔𝑠, ®𝑦( ®𝑅0, 𝑔𝑠, ®𝑧), ®𝑧

)
𝜕𝑧𝑖

�������
®𝑧=®0

, (32)

12
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Figure 51: Results for gradient flow scales.

11.6.2 Potential scales

We now turn to a review of the calculations of the potential scales r0 and r1. The results are
compiled in Tab. 77 and shown in Fig. 52. The most recent calculations date back to 2014,
and we discuss them in the order that they appear in the table and the figure.

Collaboration Ref. Nf pu
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r0 [fm] r1 [fm]

ETM 14 [34] 2+1+1 A � F F f⇡ 0.474(14)
HPQCD 13A [68] 2+1+1 A F � F f⇡ 0.3112(30)
HPQCD 11B [63] 2+1+1 A � � � �M⌥, f⌘s 0.3209(26)

HotQCD 14 [71] 2+1 A F F F r1([74])# 0.4688(41)
�QCD 14 [75] 2+1 A � � � three inputs5 0.465(4)(9)
HotQCD 11 [73] 2+1 A F F F f⇡ 0.468(4)
RBC/UKQCD 10A [40] 2+1 A � � � M⌦ 0.487(9) 0.333(9)
MILC 10 [74] 2+1 C � F F f⇡ 0.3106(8)(14)(4)
MILC 09 [76] 2+1 A � F F f⇡ 0.3108(15)(+26

�79)
MILC 09A [35] 2+1 C � F F f⇡ 0.3117(6)(+12

�31)
HPQCD 09B [64] 2+1 A � F � three inputs 0.3133(23)(3)
PACS-CS 08 [33] 2+1 A F ⌅ ⌅ M⌦ 0.4921(64)(+74

�2 )
HPQCD 05B [65] 2+1 A � � � �M⌥ 0.469(7) 0.321(5)
Aubin 04 [77] 2+1 A � � � �M⌥ 0.462(11)(4) 0.317(7)(3)

Table 77: Results for potential scales at the physical point, cf. Eq. (466). �M⌥ = M⌥(2s) �
M⌥(1s).
# This theory scale was determined in turn from r1 [74].

ETM 14 [34] uses Nf = 2 + 1 + 1 Wilson twisted-mass fermions at maximal twist (i.e.,

16

Figure 3: FLAG [1] average of the lattice determinations of the gradient-flow scales 𝑡0 and 𝑤0.

we see explicitly that, if the same external (and experimental) inputs are used in order to match
isoQCD and QCD+QED, at fixed UV cutoff the resulting IB correction is nothing but the leading
term in the Taylor expansion of our observable w.r.t. the IB bare parameters 𝑒2 and (𝑎𝑚𝑢 − 𝑎𝑚𝑑)/2
(see Eq. (14)).

5. Does the choice of the QCD prescription matter?

In principle it does. In the previous section we learned that

𝜎isoQCD( ®𝑅0 + 𝜀) − 𝜎isoQCD( ®𝑅0) = 𝜀𝑛
𝜕𝜎isoQCD( ®𝑅0)

𝜕𝑅𝑛0
= O( ®𝜀) , (33)

i.e. the difference between isoQCD results obtained with different prescriptions is of the same order
of the IB corrections. If the IB corrections do matter also the scheme dependence is important.

In practice, as rarely happens in life, we are quite lucky. Although different lattice collaborations
adopted different prescriptions to define isoQCD no significant differences have been observed yet
within the quoted uncertainties.

We cannot expect this to be true for any observable but, for example, we can consider the gradient-
flow theory scales 𝑡0 [42] and 𝑤0 [43] that can be computed quite precisely on the lattice. This
has been done in Ref. [1] by the FLAG scale-setting working group, see Figure 3. The different
collaborations [39, 43, 50, 54–61] used different observables to define isoQCD (see Table 76 of
Ref. [1]) and also different values for these observables. In most of the cases 𝑀

exp
𝜋0 has been

used but different values, in the range [494.2, 497.6] MeV, have been adopted for the kaon mass.
Leptonic decay constants have been used in Refs. [54, 56–59, 61] while 𝑀

exp
Ω− has been adopted in

Refs. [39, 43, 50, 55]. In fact, a careful analysis reveals that the differences observed in Figure 3
cannot be ascribed to the scheme dependence.

In the case of 𝑤0 a dedicated study of the scheme dependence has been performed in Ref. [39],
from which we extracted Figure 4. The figure shows the continuum extrapolation of 𝑤0 obtained

13
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Figure 23: Continuum extrapolation of the isospin-symmetric value of w0 using three di↵erent inputs: t0
from the lattice work [100], M⌦ from experiment [74] and f⇡ from a combination of chiral perturbation
theory and experiment [74]. The dashed lines are quadratic and cubic functions of a2 in case of t0, and
linear and quadratic otherwise. The colored shaded regions around a2 = 0.010 fm2 correspond to the
uncertainty in the input quantity. The horizontal grey shaded region is our final w0 determination from
Equation (167). Note, there is a di↵erence in the definition of the isospin-symmetric point in the di↵erent
inputs.

symmetric value [w0]iso = [w0]⇤. To obtain [w0]isoq we also need a pion and kaon mass that is purified
from isospin-breaking e↵ects. For these we take M⇡ = 134.8(3) MeV and MK = 494.2(3) MeV [9].

The fit procedure is similar to the Type-I fits that we performed before for w0M⌦. The physical point
is given by the f⇡, M⇡ and MK values above. Since we work with the isospin-symmetric component,
only the A, B and C coe�cients of Equation (144) are kept. We apply both linear and quadratic fits
in a2, with the usual cuts in the lattice spacing. Figure 23 shows representative fits from this analysis,
with good fit qualities. The continuum extrapolated values are consistent with our [w0]⇤ from Equation
(167). However the spread between the di↵erent continuum extrapolations is smaller, since the curvature
of w0f⇡ in a2 is smaller than in w0M⌦.

Another way to determine w0 is to take the t0-scale, also defined from the Wilson-flow, as input.
This determination basically computes the w0/t0 ratio. For the physical value of t0 we use [t0]isoq =
0.1416

�
+8
�5

�
fm from [100], which has a precision of about 0.5%. The same analysis is carried out as

before, with the di↵erence that now we also include cubic fits in a2, since the data shows a very strong
curvature and the linear fits have a bad quality. Figure 23 shows representative fits, giving continuum
values consistent with using M⌦ as input, Equation (167).

Finally we show here a method to determine [w0]iso, which is also based on M⌦ as an input parameter,
but uses the idea of a t-shift in the Wilson flow [104]. The main reason for this analysis is to determine
whether the strong quadratic upward trend in w0 for small lattice spacings, see top panel of Figure 20,
is a genuine cuto↵ e↵ect? Indeed, the Wilson flow is known to have a transient for small flow times.
Although the a↵ected region shrinks as one approaches the continuum limit, the e↵ect might be sizable
particularly if we want to reach an accuracy on the few per-mil level.

The t-shift in the Wilson-flow replaces ht2E(t)i with ht2E(t + sa2)i, which is essentially applying the
flow on a smeared gauge field (pre-smearing). It can be interpreted as an improved operator for the energy
density. Obviously, in the continuum limit flows with or without t-shifts are the same. We measured a
combination, w0 · t0(s1)/t0(s2), which obviously gives back w0 in the continuum limit. Clearly, this

71

Figure 4: Study of the dependence of 𝑤0 upon the prescription used to define isoQCD performed in Ref. [39]

by using different inputs to define isoQCD. More precisely, the red data have been obtained by
using 𝑀

exp
𝜋0 , the theory scale 𝑀

Γ5
𝑠𝑠 = 689.89(49) MeV and 𝑀

exp
Ω− . The blue and green data have been

obtained by using 𝑀𝜋 = 134.8(3) MeV, 𝑀𝐾 = 494.2(3) MeV, 𝑓𝜋 = 130.50(14) MeV (blue) and
𝑡0 = 0.1416(+8

−5) fm (green). Although the data corresponding to different prescriptions do differ at
fixed UV cutoff, no significant differences are observed within the quoted errors in the continuum.

A detailed numerical investigation of the scheme dependence has also been performed in Refs. [38,
41] in the case of the leptonic decay rates of pions and kaons. In Ref. [38] it has been demonstrated
the numerical equivalence, at the current level of precision, of the hadronic scheme defined by
𝑀𝜋 = 135.0(2) MeV, 𝑀𝐾 = 494.6(1) MeV, 𝑀𝐷𝑠

= 1966.7(1.5) MeV, 𝑓𝜋 = 130.65(12) MeV with
the so-called GRS scheme [36]. The GRS scheme is particularly attractive because defines isoQCD
by imposing that the renormalized couplings (theory scales)

�̂�𝑠 (𝜇),
�̂�𝑢 (𝜇) + �̂�𝑑 (𝜇)

2
, �̂�𝑠 (𝜇), �̂�𝑐 (𝜇) (34)

are the same in isoQCD and in QCD+QED and, therefore, matches the two theories by using short-
distance conditions that can easily be implemented in analytical calculations (e.g. in high-energy
perturbative calculations or in chiral perturbation theory). In fact one has different GRS schemes
depending upon the choices of the renormalization scheme and of the scale 𝜇 and, as originally
done in Ref. [7], 𝜇 = 2 GeV and the MS scheme have been used in Ref. [38]. A similar study, albeit
at a single value of the lattice spacing, has been performed more recently in Ref. [41].

As I said at the beginning of this section, we have been quite lucky so far. Although we must expect
differences between isoQCD results obtained in different schemes, in fact, the adopted schemes are
not as different as it might appear at first sight!
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6. The past is the past, what about the future?

Thank God a consensus is emerging within the lattice community on the necessity of agreeing on
a scheme to define isoQCD. That’s why I have been invited to give this talk in which I have been
mostly discussing well established facts about renormalization theory.

I’m not going to make an explicit proposal here for the scheme to be used. We could use physical
quantities and their experimental measurements, slightly corrected experimental values, theory
scales, whatever. What really matters is that we sit down around a table and decide what has to be
done in the future. An explicit proposal will be presented in the next edition of the FLAG review.
Stay tuned and, please, take it in due consideration!
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