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We propose a new method for the classification of excitations of nuclei. Taking 12C as an example,
we determine whether a given excited state is more of an 𝛼-cluster excitation or a single-nucleon
excitation. Using the so-called pinhole algorithm in the framework of nuclear lattice effective field
theory, we study the distance between any two 𝛼 clusters in the nucleus, and the separations of
arbitrarily chosen nucleons inside an 𝛼 cluster. For a state which is predominantly a cluster-type
excitation (such as the Hoyle state) the distribution of 𝛼 − 𝛼 separations is very different from that
of the ground state. For states that are predominantly single-nucleon excitations, the two-nucleon
separation inside an 𝛼 cluster is in general increased.
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1. Introduction

A nucleus is a self-bound system of fermions, i.e. protons and neutrons. Somewhat surprisingly,
already this simple fact has a profound influence on the 𝛼-cluster structure of nuclei. Due to the
Pauli principle, the four nucleons (proton spin-up, proton spin-down, neutron spin-up, and neutron
spin-down) inside an 𝛼 cluster can have the same spatial distribution, while further nucleons must
occupy a different state with a different distribution. Thus, in nature we see the 8Be nucleus as
a prominent example of clustering with two weakly interacting 𝛼 clusters. Similarly, the famous
“Hoyle state” of 12C, which is crucial for the synthesis of carbon and heavier elements in stars, is a
three 𝛼-cluster state and its geometric shape has been debated for a long time [1–17].

In the shell model, which has achieved great success in describing nuclear systems [18, 19],
nucleons are described as independent particles moving in a mean field generated by all the nucleons.
Either the cluster picture or the single-particle picture would likely be too simple for realistic nuclear
systems, therefore the duality and interplay of these is an interesting topic [20]. In a recent work
using nuclear lattice effective field theory (NLEFT) [17], the geometric shape has been studied
for low-lying states of 12C, and some interesting features of cluster excitation and single-nucleon
excitation can be seen from the 3D density distribution. In this contribution, we will show a more
quantitative description of the excitation modes by looking at the distribution of distances between
two 𝛼 clusters and of two nucleons inside a cluster.

2. Theoretical framework

Here, we work within NLEFT [21, 22] and use a spatial lattice spacing 𝑎 = 1.64 fm and a
temporal lattice spacing 𝑎𝑡 = 0.55 fm. The spatial lattice spacing corresponds to a momentum
cut-off of 378 MeV. A periodic box with 𝐿 = 9 is used and this corresponds to a physical box size
of 14.8 fm. We use an SU(4) symmetric NN interaction:

𝑉 =
𝐶2
2!

∑︁
n

�̃�(n)2 + 𝐶3
3!

∑︁
n

�̃�(n)3, (1)

with 𝐶2 and 𝐶3 the two-body and three-body coupling constants, respectively. The density operator
is smeared locally and non-locally with the coefficients 𝑠L and 𝑠NL, respectively, as

�̃�(n) =
𝐴∑︁
𝑖=1

�̃�
†
𝑖
(n)�̃�𝑖 (n) + 𝑠L

∑︁
|n′−n |=1

𝐴∑︁
𝑖=1

�̃�
†
𝑖
(n′)�̃�𝑖 (n′), (2)

�̃�𝑖 (n) = 𝑎𝑖 (n) + 𝑠NL
∑︁

|n′−n |=1
𝑎𝑖 (n′). (3)

The four parameters in the interaction are determined by fitting to the ground-state energy of 4He
and 12C, the ground-state charge radius of 12C, and to several electromagnetic transition rates [17].
The final values are

𝐶2 = −2.15 × 10−5, 𝐶3 = 6.17 × 10−12, 𝑠NL = 0.05, 𝑠L = 0.08. (4)
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For a projection MC (PMC) simulation with 𝑁ch coupled channels, one starts from a set of
initial trial states |Φ𝑖⟩ with 𝑖 = 1, 2, . . . , 𝑁ch and each of them is a Slater determinant of single-
particle wave functions. For the choices of initial trial states see the discussion in Refs. [15, 17].
One can calculate the Euclidean projection amplitudes at time step 𝑁𝑡 as

𝑍𝑘𝑙 (𝑁𝑡 ) = ⟨Φ𝑘 |𝑀𝑁𝑡 |Φ𝑙⟩, (5)

with transfer matrix defined as
𝑀 =: exp(−𝛼𝐻) :, (6)

where the colons denote normal ordering and 𝛼 = 𝑎𝑡/𝑎. The Hamiltonian is 𝐻 = 𝑇 + 𝑉 ,with
𝑇 = p2/(2𝑚𝑁 ) the kinetic energy, and 𝑉 is the NN interaction in Eq. (1).

The “adiabatic” transfer matrix is calculated as

𝑀
(𝑎)
𝑞𝑞′ (𝑁𝑡 ) =

∑︁
𝑞′′

𝑍−1
𝑞𝑞′′ (𝑁𝑡 )𝑍𝑞′′𝑞′ (𝑁𝑡 + 1), (7)

with eigenvalues
𝜆𝑖 (𝑁𝑡 ) = exp(−𝛼𝑡𝐸𝑖 (𝑁𝑡 )). (8)

The low-lying spectrum can be calculated as

𝐸𝑖 (𝑁𝑡 ) = − log(𝜆𝑖 (𝑁𝑡 ))
𝛼𝑡

. (9)

To get the geometric information of the nucleus, we adopt the so-called pinhole algorithm [23],
in which the following amplitude is calculated

𝑍𝑘𝑙 (n1, . . . , n𝐴, 𝑁𝑡 ) = ⟨Φ𝑘 |𝑀𝑁𝑡/2𝜌(n1, . . . , n𝐴)𝑀𝑁𝑡/2 |Φ𝑙⟩, (10)

with the 𝐴-body density operator 𝜌(n1, . . . , n𝐴) constructed from the normal-ordered product of
density operators 𝜌(n𝑖) = 𝑎

†
𝑖
(n)𝑎

𝑖
(n). The positions for 𝐴 nucleons (or “pinholes”) n𝑖 are sampled

stochastically. The finite size of the nucleons is accounted for by a random Gaussian smearing of
the nucleon positions. With the position information 𝑟𝑖 , 𝑖 = 1, 2, . . . 𝐴, for all the nucleons, we
can study the density distribution, transition form factors, and geometric structure as illustrated in
Ref. [17].

3. Results and discussion

We find clusters of protons/neutrons (spin up/down) by identifying the most compact groupings
of four nucleons. The rms radii of such clusters are quite similar to that of an 𝛼 particle, both for the
ground state and the Hoyle state of 12C. This shows that the 𝛼-cluster structure is quite dominant
for those states, which is not always the case for other excited states as we show in Fig. 1. In the left
panel of Fig. 1, we show the distribution of the average distance between two nucleons inside an 𝛼

cluster. In the right panel of Fig. 1, we show the distribution of the distance between two arbitrary
𝛼 clusters in 12C.
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Figure 1: (Left) Distribution of two nucleons inside an 𝛼 cluster for different states of 12C calculated by
NLEFT. (Right) Distribution of two 𝛼 clusters.

As discussed in Ref. [17], the ground state (0+1) is a compact equilateral triangle of three 𝛼

clusters, the Hoyle state (0+2) is a large-angle obtuse triangle close to a linear chain, 0+3 is a small-
amplitude vibrational excitation of 0+2 , and 0+4 is predominantly a two-particle-two-hole excitation.
This interpretation is consistent with the characteristic features of the distance distribution in Fig. 1:
On the one hand, when the excited state is predominantly a single-nucleon excitation such as 0+4 ,
the 𝛼-structure will be reduced, and the average distance between two nucleons inside the 𝛼 cluster
will increase due to the excitation of one (or more) nucleon(s) out of the cluster. On the other hand,
when the excited state is more of an 𝛼-cluster excitation (such as 0+2 and 0+3), the average distance
between two nucleons inside an 𝛼 cluster is little influenced, while the spatial configuration of 𝛼
clusters is changed.

4. Summary

In this contribution, we showed a model-independent way to distinguish between 𝛼-cluster
excitations and single-nucleon excitations in nuclei. Although we have used the framework of
NLEFT, our method should have general applicability. This entailed a calculation of the distribution
of the average distance between two nucleons inside a proton/neutron - spin up/down cluster, as well
as the distribution of the two-cluster separation. When a nuclear excited state is more of a cluster
excitation, the distribution of the two-nucleon distance inside a cluster was found to not change
much, while that of the distance between two clusters was greatly affected. For single-nucleon
excitations, this situation is reversed.
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