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Maximally supersymmetric Yang–Mills theory (N = 4 SYM) is conformal for any value of the
coupling. Lattice regularization breaks conformality through the introduction of a non-zero lattice
spacing and a finite lattice volume. This proceedings presents ongoing computations of conformal
scaling dimensions in lattice N = 4 SYM, based on a lattice formulation that exactly preserves
a supersymmetry sub-algebra at non-zero lattice spacing. The main targets are the non-trivial
anomalous dimension of the Konishi operator, as well as a mass anomalous dimension extracted
from the eigenvalue mode number of the fermion operator. The latter is expected to vanish in
the conformal continuum theory, providing insight into the interplay of lattice discretization and
conformality.
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1. Introduction

Maximally supersymmetric Yang–Mills theory (N = 4 SYM) is widely studied in theoretical
physics. It is arguably the simplest non-trivial quantum field theory in four dimensions, especially
in the large-𝑁 planar limit of its SU(𝑁) gauge group, thanks to its many symmetries. It plays a key
role in holographic duality, provided early insight into S-duality, and continues to inform modern
analyses of scattering amplitudes.

Lattice regularization of N = 4 SYM is an active area that provides both a non-perturbative
definition of the theory as well as a way to numerically predict its behavior from first principles,
even at strong coupling and away from the planar limit. See Ref. [1] for a recent review. Lattice
formulations ofN = 4 SYM necessarily break symmetries of the continuum theory, and most of the
recent activity has relied on an approach that preserves a closed supersymmetry subalgebra at non-
zero lattice spacing 𝑎 > 0 [1, 2]. Despite preserving only a single one of the 16 supersymmetries,
this single exact supersymmetry significantly simplifies the lattice theory, making it possible to
ensure the recovery of the other 15 in the 𝑎 → 0 continuum limit.

This proceedings focuses on a different challenge to lattice studies of N = 4 SYM. Although
the continuum theory is conformal for every value of the ’t Hooft coupling 𝜆 = 𝑁𝑔2

YM, numerical
lattice field theory calculations require both a non-zero lattice spacing corresponding to a UV cutoff
∼ 1/𝑎, as well as a finite lattice volume (𝐿 ·𝑎)4 introducing an IR cutoff. Both of these explicitly
break conformal scale invariance, complicating lattice analyses of the spectrum of 𝜆-dependent
conformal scaling dimensions, key information about the theory.

After a brief review of lattice N = 4 SYM in the next section, I will summarize recent and
ongoing numerical investigations of two scaling dimensions of particular interest. First, Section 3
presents results from Ref. [3] for a mass anomalous dimension obtained by analyzing the eigenmode
number of the fermion operator. This anomalous dimension is expected to vanish, 𝛾∗ = 0, for all
values of 𝜆, which allows numerical results to reveal the effects of breaking conformality (and
supersymmetry). Second, in Section 4 I show preliminary results from ongoing lattice studies of
the non-trivial Konishi scaling dimension Δ𝐾 (𝜆). Section 5 concludes with a brief discussion of
next steps for this work.

2. Lattice N = 4 SYM in a nutshell

The lattice formulation used in this work is based on so-called topological twisting, which
organizes the 16 supercharges of the theory into integer-spin representations of the twisted rotation
group SO(4)tw ≡ diag [SO(4)euc ⊗ SO(4)𝑅], where SO(4)euc is the Lorentz group Wick-rotated
to euclidean space-time and SO(4)𝑅 is a subgroup of the SU(4) R-symmetry. The twisted-scalar
supersymmetry Q is nilpotent, preserving the subalgebra {Q,Q} = 0 even at non-zero lattice
spacing where the other 15 supersymmetries are broken by the lattice discretization of space-time.

The lattice theory is formulated on the 𝐴∗4 lattice (which distinguishes 𝜆lat from 𝜆 [4]), with an
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action that features the same Q-exact and Q-closed terms as the twisted continuum theory:

𝑆 =
𝑁

4𝜆lat

∑︁
𝑛

Tr
[
Q

(
𝜒𝑎𝑏 (𝑛)D (+)𝑎 U𝑏 (𝑛) + 𝜂(𝑛)D

(−)
𝑎 U𝑎 (𝑛) −

1
2
𝜂(𝑛)𝑑 (𝑛)

)]
− 𝑁

16𝜆lat

∑︁
𝑛

Tr
[
𝜀𝑎𝑏𝑐𝑑𝑒 𝜒𝑑𝑒 (𝑛 + 𝜇𝑎 + 𝜇𝑏 + 𝜇𝑐)D

(−)
𝑐 𝜒𝑎𝑏 (𝑛)

]
.

(1)

Here 𝜂, 𝜓𝑎 and 𝜒𝑎𝑏 = −𝜒𝑏𝑎 are 1-, 5- and 10-component fermions respectively associated with the
lattice sites, links and oriented plaquettes. The five-component complexified gauge links U𝑎 and
U𝑎 appearing in the finite-difference operators D (+)𝑎 and D (−)𝑎 contain both the gauge and scalar
fields.

The complexified gauge links imply U(𝑁) = SU(𝑁)×U(1) gauge invariance. In order to carry
out numerical calculations, flat directions in both the SU(𝑁) and U(1) sectors need to be regulated.
We achieve this by adding two deformations to Eq. 1, following Ref. [5].1 First, the double-trace
scalar potential

𝑆scalar =
𝑁

4𝜆lat
𝜇2

∑︁
𝑛

∑︁
𝑎

(
1
𝑁

Tr
[
U𝑎 (𝑛)U𝑎 (𝑛)

]
− 1

)2
(2)

regulates the SU(𝑁) flat directions while softly breaking the Q supersymmetry. The second
deformation is Q-exact, and replaces the term

Q
(
𝜂(𝑛)D (−)𝑎 U𝑎 (𝑛)

)
−→ Q

(
𝜂(𝑛)

[
D (−)𝑎 U𝑎 (𝑛) + 𝐺

∑︁
𝑎≠𝑏

(detP𝑎𝑏 (𝑛) − 1) I𝑁

])
(3)

in Eq. 1. This picks out the U(1) sector through the determinant of the plaquette oriented in the 𝑎–𝑏
plane, P𝑎𝑏 (𝑛), which is an 𝑁 × 𝑁 matrix at each lattice site 𝑛. The tunable parameter 𝜇 needs to be
sent to zero in the continuum limit in order to restore supersymmetry, where the U(1) deformation
involving 𝐺 can be expected to decouple.

Using parallel software that we make publicly available2 and presented in Ref. [7], we have
used the rational hybrid Monte Carlo (RHMC) algorithm to generate many ensembles of field
configurations. We have also publicly implemented the stochastic estimation of the eigenmode
number discussed in the next section, for which we rescale some of the fermion field components
in order to put the fermion operator into its most symmetric form. See Ref. [3] for further details
about this rescaling.

3. Mass anomalous dimension from fermion eigenmode number

Building on the early work of Ref. [8], the recent study Ref. [3] uses efficient modern techniques
to evaluate the eigenmode number of the fermion operator, which is related to a mass anomalous
dimension 𝛾∗ [9–12]. Starting from the spectral density of the squared massless fermion operator
𝐷†𝐷,

𝜌(𝜔2) = 1
𝑉

∑︁
𝑘

〈
𝛿(𝜔2 − 𝜆2

𝑘)
〉

(4)

1There is ongoing exploration of alternative lattice actions, including Ref. [6].
2github.com/daschaich/susy
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Figure 1: From Ref. [3], the normalized eigenmode number for U(2) 164 lattices, including both the free
theory (red) and the interacting theory with 0.25 ≤ 𝜆lat ≤ 2.5, plotted vs. the energy scale Ω2 on log–log
axes.

(where the eigenvalues 𝜆𝑘 of 𝐷 should not be confused with the ’t Hooft coupling 𝜆), the eigenmode
number 𝜈(Ω2) is the number of eigenvalues 𝜆2

𝑘
of the non-negative operator 𝐷†𝐷 that are smaller

than Ω2:

𝜈(Ω2) =
∫ Ω2

0
𝜌(𝜔2)𝑑𝜔2 ∝

(
Ω2

)2/(1+𝛾∗)
. (5)

Note that the antisymmetry of the lattice N = 4 SYM fermion operator 𝐷,

Ψ𝑇 𝐷Ψ = 𝜒𝑎𝑏D (+)[𝑎 𝜓𝑏] + 𝜂D†(−)𝑎 𝜓𝑎 +
1
2
𝜀𝑎𝑏𝑐𝑑𝑒𝜒𝑎𝑏D†(−)𝑐 𝜒𝑑𝑒,

ensures that the eigenvalues of 𝐷 come in ±𝜆𝑘 pairs.
In order to efficiently evaluate the spectral density and eigenmode number over the full spectral

range of each lattice ensemble, we adopt the method of stochastically estimating the Chebyshev
expansion [13]

𝜌𝑟 (𝑥) ≈
𝑃∑︁
𝑛=0

2 − 𝛿𝑛0

𝜋
√

1 − 𝑥2
𝑐𝑛𝑇𝑛 (𝑥). (6)

For lattice ensembles with gauge groups U(2), U(3), U(4) and lattice volumes up to 164, we retain
5000 ≤ 𝑃 ≤ 10000 terms in the Chebyshev expansion. In Ref. [3] we checked selected results
against both direct iterative evaluation of the low-lying eigenvalues as well as stochastic projection
computations. Both of those methods are much more computationally expensive than the stochastic
Chebyshev expansion.

Figure 1, from Ref. [3], presents results for the normalized eigenmode number 𝜈(Ω2) from
164 lattices with gauge group U(2) and a range of ’t Hooft couplings. In particular, we evaluated
the eigenmode number for the free theory, shown by the red line in this figure, which shows the
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Figure 2: From Ref. [3], the effective anomalous dimension 𝛾eff obtained from the U(2) 164 results shown
in Fig. 1, again plotted vs. the energy scale Ω2 (on linear axes).

effects of the finite, discrete lattice space-time. The smoother curves come from ensembles of field
configurations generated with 0.25 ≤ 𝜆lat ≤ 2.5.

According to Eq. 5, the slope of 𝜈(Ω2) on the log–log axes of Fig. 1 is directly related to
the mass anomalous dimension 𝛾∗. Due to the explicit breaking of conformality, we are only
able to access a scale-dependent effective anomalous dimension 𝛾eff(Ω2). We extract this effective
anomalous dimension by fitting our data to Eq. 5 in windows

[
Ω2,Ω2 + ℓ

]
with ℓ ∈ [0.03, 1] fixed

for each ensemble. The U(2) 164 results for 𝛾eff(Ω2) from these fits are collected in Fig. 2. From
this figure we can see that the true 𝛾∗ = 0 is correctly being recovered in the IR, Ω2 � 1. We
can also see that even the free theory on a 164 lattice suffers from significant lattice artifacts as Ω2

increases. Finally, these artifacts clearly increase rapidly as the lattice ’t Hooft coupling becomes
stronger, quantifying the challenge of successfully recovering the superconformal continuum field
theory.

4. Konishi and SUGRA scaling dimensions

While the expectation 𝛾∗ = 0 for the mass anomalous dimension discussed above makes it a
useful tool with which to explore the breaking of supersymmetry and conformality in lattice studies
of N = 4 SYM, it’s also important to pursue non-trivial scaling dimensions using lattice field
theory. A compelling target is the scaling dimension of the ‘Konishi’ operator

O𝐾 (𝑥) =
∑︁
𝐼

Tr
[
Φ𝐼 (𝑥)Φ𝐼 (𝑥)

]
, (7)

where Φ𝐼 are the six real scalar fields of the continuum theory. This is the simplest conformal
primary operator of N = 4 SYM, with non-trivial scaling dimension Δ𝐾 (𝜆) = 2 + 𝛾𝐾 (𝜆) that
has been predicted with weak-coupling perturbation theory [14–16], from holography at strong

5
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Figure 3: The Konishi and SUGRA two-point correlators for a U(2) 164 ensemble with 𝜆lat = 0.5, plotted vs.
the distance 𝑟 on log–log axes. The solid and dotted lines are not fits, but expectations based on leading-order
perturbation theory and the exact value Δ𝑆 = 2, respectively.

couplings 𝜆 → ∞ with 𝜆 � 𝑁 [17], and for all couplings in the 𝑁 = ∞ planar limit [18]. Thanks
to S-duality, which predicts an invariant spectrum of N = 4 SYM anomalous dimensions under
the interchange 4𝜋𝑁

𝜆
←→ 𝜆

4𝜋𝑁 , the perturbative results are also relevant in the alternate strong-
coupling regime 𝜆 � 𝑁 [19]. In addition, the superconformal bootstrap program has been applied
to analyze the Konishi anomalous dimension, with initial bounds on the maximum value 𝛾𝐾 could
reach across all 𝜆 [20, 21] recently being generalized to 𝜆-dependent constraints [22].

In order to analyze the Konishi scaling dimension from our lattice calculations, we first need
to isolate scalar fields 𝜑𝑎 (𝑛) that have been twisted into the complexified gauge links. We do so
using a polar decomposition,

U𝑎 (𝑛) = 𝑒𝜑𝑎 (𝑛)𝑈𝑎 (𝑛). (8)

Because the Konishi operator is a scalar under the twisted rotation group, it picks up a non-zero
vacuum expectation value (vev) that needs to be subtracted,

Olat
𝐾 (𝑛) =

∑︁
𝑎

Tr [𝜑𝑎 (𝑛)𝜑𝑎 (𝑛)] − vev. (9)

Figure 3 shows preliminary results for the Konishi correlator

𝐶𝐾 (𝑟) = Olat
𝐾 (𝑛 + 𝑟)O

lat
𝐾 (𝑛) ∝ 𝑟−2Δ𝐾 , (10)

along with the corresponding correlator of the ‘SUGRA’ operator

O𝐼 𝐽𝑆 (𝑥) = Tr
[
𝑋 {𝐼 (𝑥)𝑋 𝐽 } (𝑥)

] [
Olat
𝑆

]𝑎𝑏 (𝑛) = Tr
[
𝑋 {𝑎 (𝑛)𝑋𝑏} (𝑛)

]
. (11)

In the continuum theory, O𝑆 transforms in the symmetric traceless 20′ representation of the SO(6)
R-symmetry, and it has no anomalous dimension: Δ𝑆 = 2 for all ’t Hooft couplings. Considering
gauge group U(2) on a 164 lattice volume with 𝜆lat = 0.5, the figure shows a range of 𝑟 in which

6
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Figure 4: Preliminary results for the Konishi scaling dimension Δ𝐾 (𝜆lat) from MCRG analyses for gauge
groups up to U(4) (different colors) and lattice volumes up to 164 (different symbols). The thin and thick
error bars on each point correspond to statistical and total uncertainties, respectively. The dashed line at the
top of the plot is an upper bound on Δ𝐾 (𝜆lat) from conformal bootstrap analyses.

the Konishi correlator shows a clear power law — a straight line on these log–log axes, with slope
in agreement with the leading-order perturbative prediction for Δ𝐾 (𝜆). The SUGRA correlator
is noisier, due to being ∼ 100× smaller in magnitude, but behaves consistently with its protected
scaling dimension Δ𝑆 = 2.

Work remains in progress to quantify the systematic uncertainties that come into play when
extracting Δ𝐾 from correlators of this sort, which include sensitivity to the power-law fit range and
the subtraction of the vev in Eq. 9, along with finite-volume and discretization artifacts. So far
we have had more success determining Δ𝐾 through Monte Carlo renormalization group (MCRG)
stability matrix analyses [23]. Treating the lattice system as a formally infinite sum of operators,∑
𝑖 𝑐𝑖O𝑖 , essentially all of which are irrelevant in the RG sense, an RG blocking 𝑅𝑏 step defines a

new system
𝐻 (𝑛) = 𝑅𝑏𝐻

(𝑛−1) =
∑︁
𝑖

𝑐
(𝑛)
𝑖
O (𝑛)
𝑖

(12)

based on 𝑛-times blocked operators O (𝑛)
𝑖

with RG-flowed coefficients 𝑐 (𝑛)
𝑖

.
For a conformal system likeN = 4 SYM at any value of the ’t Hooft coupling 𝜆, the conformal

fixed point is characterized by 𝐻∗ = 𝑅𝑏𝐻
∗ with couplings 𝑐∗

𝑖
. Linearizing around this fixed point,

𝑐
(𝑛)
𝑖
− 𝑐∗𝑖 =

∑︁
𝑘

𝜕𝑐
(𝑛)
𝑖

𝜕𝑐
(𝑛−1)
𝑘

�����
𝐻 ∗

(
𝑐
(𝑛−1)
𝑘

− 𝑐∗𝑘
)
≡

∑︁
𝑘

𝑇∗𝑖𝑘

(
𝑐
(𝑛−1)
𝑘

− 𝑐∗𝑘
)
, (13)

defines the stability matrix 𝑇∗
𝑖𝑘

. In lattice calculations, the matrix elements of 𝑇∗
𝑖𝑘

come from
correlators of the operators O𝑘 and O𝑘 evaluated after different numbers of RG blocking steps,
while its eigenvalues provide the corresponding scaling dimensions.

The lattice N = 4 SYM RG blocking transformation that we use was introduced by Ref. [24]
and produces the results for the Konishi scaling dimension Δ𝐾 (𝜆lat) shown in Fig. 4 for different

7
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gauge groups U(2), U(3) and U(4) along with different lattice volumes up to 164. In these analyses,
we have used both Olat

𝐾
and Olat

𝑆
to construct the stability matrix, using APE-like smearing to expand

the basis of operators. We have also imposed Δ𝑆 = 2 as a constraint, which ensures physical results
for Δ𝐾 ≥ 2 corresponding to 𝛾𝐾 > 0. By varying the operator basis in the analyses we have
obtained initial estimates for systematic uncertainties. The thin error bars on each point combine
statistical and systematic uncertainties in quadrature, while the think error bars show the statistical
uncertainties themselves.

For the range of ’t Hooft couplings we have analyzed so far, 𝜆lat ≤ 3 our results for the Konishi
scaling dimension are consistent with perturbation theory, and well below the U(2) bootstrap bound
on the maximum value of Δ𝐾 across all 𝜆 [20, 21]. This is not surprising, given that the perturbative
expansion parameter is 𝜆/4𝜋2. It is a longstanding challenge to reach stronger couplings [6], and
another challenge comes from the twisted formulation we employ. Because the twisted rotation
group involves only an SO(4)𝑅 subgroup of the full SO(6)𝑅 R-symmetry, the SUGRA operator
O𝑆 is projected from the 20′ representation of SO(6) to a collection of SO(4) representations. In
particular, these include an SO(4)𝑅-singlet piece that mixes with our lattice Konishi operator Olat

𝐾

and may require variational analyses to disentangle.

5. Conclusions and next steps

This proceedings has explored the role of broken conformality in lattice studies ofN = 4 SYM
by analyzing two conformal scaling dimensions. The first, a mass anomalous dimension related to
the eigenmode number of the fermion operator, is expected to vanish, 𝛾∗ = 0, for all values of 𝜆,
making it a useful tool with which to quantify the effects of broken conformality. By stochastically
reconstructing the Chebyshev expansion of the spectral density, we can extract a scale-dependent
effective anomalous dimension that correctly converges to the true 𝛾∗ = 0 in the IR. Even the free
theory exhibits significant lattice artifacts at higher energy scales, which increase rapidly as the
lattice ’t Hooft coupling 𝜆lat becomes stronger.

Second, turning to the non-trivial, 𝜆-dependent scaling dimension of the Konishi operator, we
have been able to verify conformal power-law scaling of the Konishi correlator with an appropriate
value of Δ𝐾 . Further analyses using the MCRG stability matrix method have produced preliminary
results for the scaling dimension that are consistent with continuum perturbation theory for 𝜆lat ≤ 3.
Work is in progress to finalize these results, and in the longer term to push to stronger ’t Hooft
couplings, with particular interest in the self-dual point 𝜆 = 4𝜋𝑁 . Were are also exploring potential
applications of the gradient flow to lattice N = 4 SYM, which could include testing the extent
to which broken conformality results in a non-zero 𝛽-function, as well as an alternate means of
analyzing conformal scaling dimensions [25].

Acknowledgments: I thank Georg Bergner, Simon Catterall and Joel Giedt for collaboration on
the investigations summarized here. This work was supported by UK Research and Innovation
Future Leader Fellowship MR/S015418/1 and STFC grant ST/T000988/1. Numerical calculations
were carried out at the University of Liverpool, the University of Bern, and on USQCD facilities at
Fermilab funded by the US Department of Energy.
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