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We report progress in the calculation of the thermal interquark potential of bottomonium using the
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We exploit the fast Fourier transform algorithm, using a momentum space representation, to
efficiently calculate NRQCD correlation functions of non-local mesonic S-wave states, and thus
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performed on our anisotropic 2+1 flavour “Generation 2" FASTSUM ensembles.
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1. Introduction

The interquark potential of quarkonia was one of the first quantities studied in the quest for a
deeper understanding of the nature of the strong interaction. Pioneering studies include [1] where
the Cornell potential was used to calculate the spectrum of charmonium states using a quantum
mechanical formalism. In thermal QCD, the temperature dependence of the interquark potential
results in quarkonium states melting at different temperatures [2]. These considerations strongly
motivate a study of the thermal behaviour of the quarkonia interquark potential.

Slowly moving heavy quarks, interacting via QCD, can be studied using non-relativistic QCD
(NRQCD) which allows significant benefits. For example, NRQCD calculations of bottomonia
are typically accurate at the percent level or less and is an excellent ground for quantitative tests.
In this work we use NRQCD to determine the interquark potential in bottomonia using the HAL
QCD approach [3]: Correlation functions of bottomonia operators are studied where the quark
and antiquark are spatially separated, and this allows an access to the Nambu-Bethe-Salpeter
wavefunction in the quarkonium rest frame. Using this wavefunction in the Schrödinger equation
leads to the interquark potential. We find indications of the weakening of the potential as the
temperature increases, as expected. This work is a continuation of the work in [4] and extends
previous studies of the interquark potential by the FASTSUM Collaboration in the charmonium
system [5, 6]. Other work in this area includes [7].

2. NRQCD and lattice setup

NRQCD is an effective theory with a power counting in the heavy quark velocity, 𝑣. In this
theory, the heavy quark and antiquark fields decouple and so virtual heavy quark-antiquark loops
cannot form. The NRQCD quark propagator is calculated via an initial value problem, rather
than via a boundary value problem (as is the case for relativistic quarks). NRQCD is particularly
amenable for lattice simulations because NRQCD quarkonium correlation functions do not have
“backward movers” which means the full extent of the lattice in the temporal direction can be used
in the analysis.

Our NRQCD formulation incorporates both O(𝑣4) and the leading spin-dependent corrections.
The 𝑏-quark mass is tuned by setting the “kinetic” mass (i.e. from the dispersion relation) of the
spin-averaged 1𝑆 states to its experimental value. Full details of our NRQCD setup appear in [8].

All our results were obtained using our FASTSUM 𝑁 𝑓 = 2+1 flavour “Generation 2” ensembles
which have the parameters listed in Table 1.

𝑁𝜏 16 20 24 28 32 36 40
T [MeV] 352 281 235 201 176 156 141

𝑁configurations 1050 950 1000 1000 1000 500 500

Table 1: An overview of the FASTSUM Generation 2 correlation functions used in this work. Lattice
volumes are (24𝑎𝑠)3 × (𝑁𝜏𝑎𝜏) with 𝑎𝑠 = 0.1227(8)fm and 𝑎𝜏 = 35.1(2)am. For these ensembles with a
pion mass of 𝑀𝜋 = 384(4)MeV, the pseudo-critical temperature Tpc = 181(1)MeV [9].
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3. Method

3.1 The HAL QCD method

To calculate the potential between two quarks in a bottomonium - the interquark potential,𝑉 (𝑟)
- we use the method from the HAL QCD collaboration [3]. In brief, this method uses the point-split
correlation function and the time independent Schrödinger equation to calculate the interquark
potential.

The point-split correlation function is defined by

𝐶Γ (r, 𝜏) =
∑︁

x
⟨𝐽Γ (x, 𝜏; r)𝐽†

Γ
(0; 0)⟩, (1)

where the non-local mesonic operators are defined

𝐽Γ (𝑥; r) = 𝑞(𝑥)Γ𝑈 (𝑥, 𝑥 + r)𝑞(𝑥 + r). (2)

The quark and antiquark fields, 𝑞 and 𝑞, are separated in space by r. The gauge field 𝑈 (𝑥, 𝑥 + r) is
required to ensure gauge invariance and Γ signifies the channel being considered; in this work we
consider vector and pseudoscalar S-wave states. The correlator in (1) is depicted in Figure 1.

(0,0) (x,𝜏)

(x+r,𝜏)

𝐽
†
Γ
(0; 0) 𝐽Γ (x, 𝜏; r)

Source Sink

�̄�

𝑏

Figure 1: A representation of the point-split correlation function, as defined in (1)

As usual, the correlation function can be expressed as a sum over eigenstates of the Hamiltonian,

𝐶Γ (r, 𝜏) =
∑︁
𝑗

Ψ 𝑗 (r)𝑒−𝐸 𝑗 𝜏 , (3)

where 𝐸 𝑗 is the energy of a given state 𝑗 , and the unnormalised wavefunction

Ψ 𝑗 (r) =
𝜓∗

𝑗
(0)𝜓 𝑗 (r)
2𝐸 𝑗

(4)

is defined in terms of the Nambu-Bethe–Salpeter wavefunction 𝜓 𝑗 (r).
We introduce the time-independent Schrödinger equation,(

−∇2
𝑟

2𝜇
+𝑉Γ (𝑟)

)
Ψ 𝑗 (𝑟) = 𝐸 𝑗Ψ 𝑗 (𝑟) , (5)

where 𝑉Γ (𝑟) is the potential for the channel Γ and 𝜇 is the reduced quark mass. We apply the
Schrödinger equation to the point-split correlation function in (3) through the following steps

−𝜕𝐶Γ (r, 𝜏)
𝜕𝜏

=
∑︁
𝑗

𝐸 𝑗Ψ 𝑗 (r)𝑒−𝐸 𝑗 𝜏 =
∑︁
𝑗

(
−∇2

𝑟

2𝜇
+𝑉Γ (𝑟)

)
Ψ 𝑗 (𝑟) 𝑒−𝐸 𝑗 𝜏

=

(
−∇2

𝑟

2𝜇
+𝑉Γ (𝑟)

)
𝐶Γ (r, 𝜏).

(6)
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This yields the form of the interquark potential for a given channel, 𝑉Γ, as

𝑉Γ (𝑟) =
1

𝐶Γ (r, 𝜏)

(
∇2
𝑟

2𝜇
− 𝜕

𝜕𝜏

)
𝐶Γ (r, 𝜏). (7)

Note that in the continuum limit, we expect the potential to be function of 𝑟 = |r|. There is explicit
time dependency in this form for the potential, and this will be studied in Section 4.1. Section 4.2
will discuss how the reduced quark mass, 𝜇, is set.

It is convenient to define the central potential, 𝑉C, obtained via the usual spin-average [10]

𝑉C =
1
4
𝑉Pseudo Scalar +

3
4
𝑉Vector. (8)

3.2 Using momentum space to reformulate the calculation

This work is a continuation of [4] where more detail about the HAL QCD method can be
found. We build upon [4] by using an efficient computation of the point-split correlation function,
𝐶Γ (r, 𝜏).

For each 𝜏, a direct calculation of (1) requires a loop over all lattice sites x for each value of r
which is an expensive operation scaling as O(V2) where V is the spatial volume. What follows is
a method to reduce the cost of this computation by introducing a momentum space representation
for the propagator and correlation function, see the Appendix of [6].

We introduce quark propagators, 𝐷−1(𝑥; 𝑦), by Wick contracting the quark fields in the point-
split correlation function, (1),

𝐶Γ (r, 𝜏) = −
∑︁

x
⟨𝐷−1(x + r, 𝜏; 0, 0)Γ𝛾5

(
𝐷−1(x, 𝜏; 0, 0)

)†
𝛾5Γ

†⟩. (9)

Note that we have gauge fixed our configurations to the Coulomb gauge, and have replaced
the gauge connection, 𝑈 (𝑥, 𝑥 + r) in (2) by unity. We now implicitly define the corresponding
momentum space quark propagator via

𝐷−1(y, 𝜏; 0, 0) = 1
𝑉

∑︁
p

�̃�−1(p, 𝜏)𝑒𝑖y·p, (10)

in terms of the 3-momentum, p, which is conjugate to the position y. Introducing this momentum-
space quark propagator into (9) yields

𝐶Γ (r, 𝜏) =
1
𝑉

∑︁
p
⟨�̃�−1(p, 𝜏)Γ𝛾5�̃�

−1(−p, 𝜏)𝛾5Γ
†⟩𝑒𝑖p·r, (11)

which we will use to implicitly define the momentum-space correlator, �̃�Γ (p, 𝜏), i.e.

𝐶Γ (r, 𝜏) =
1
𝑉

∑︁
p

�̃�Γ (p, 𝜏)𝑒𝑖p·r. (12)

We note that once we have calculated �̃�Γ (p, 𝜏), we can determine the desired correlator𝐶Γ (r, 𝜏)
for any r using (12).
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At first sight, the conversion to momentum space does not produce any savings, because the
calculation of 𝐶Γ and �̃�−1, defined via (10) and (12), are both O(V2) in the number of operations,
i.e. the same as the direct method. However both (10) and (12) are Fourier transforms, and so
significant speed-up for these steps can be achieved using the fast Fourier transform (FFT) algorithm
which scales as O(V logV).

4. Results

For better comparison with [4], and as progress towards the treatment of 𝐶Γ (r, 𝜏) for all r, we
consider here only the on-axis r data. Extensions to this will be discussed in Section 5.

4.1 Time dependence

The potential is defined in (7) where there is an apparent explicit dependence on time, 𝜏, from
the correlation function. In Figure 2, the potential, 𝑉Vector, from (7) is plotted against 𝜏 for a variety
of distances r for our two extreme temperatures, 𝑇 = 141 and 352 MeV. We can see a clear 𝜏

dependence for small 𝜏 which increases with r. However, for various ranges of 𝜏 and r there are
clear plateau.

In addition, we note that we would like to uncover temperature effects in the potential. The
most accurate way of doing this is to compare different temperatures’ potentials obtained with the
same time window to avoid contamination by systematic artefacts.

Based on these considerations, we restrict the range of 𝑟 and 𝜏 used in the determination of
the potential to those listed in Table 2. Notice that in selecting a time window, there is a trade-off
between the ranges of 𝑟 and 𝑇 for which the potential can be extracted: larger time windows give
access to a larger range of 𝑟 , but over a smaller range of 𝑇 .

In Figure 3 we show four determinations of the central potential, corresponding to the first four
time windows identified in Table 2. In each plot we show the potentials for several temperatures, and
since these have been obtained by averaging over the same range of 𝜏, the temperature dependence
can be ascribed to temperature effects, rather than fitting artefacts. We find that the potential
consistently flattens as the temperature increases above 𝑇pc, as expected. There is little thermal
variation in the potential for 𝑇 ⪅ 𝑇pc.

In Figure 3, the error bars show statistical errors only. The curves are fits to the Cornell
potential, which will be discussed in Section 4.3.

4.2 Quark mass dependence

Equation (7) contains the reduced quark mass, 𝜇, which needs to be defined. In [7], the 1S
and 2S states were used to determine the bottom quark mass 𝑚𝑏, and thus the reduced quark mass.
In our simulations we do not have access to the 2S state. We instead use the simple argument:
𝜇 ≡ 1

2𝑚𝑏 ≈ 1
2𝑀Υ, with 𝑀Υ from [11]. We have tested the sensitivity of the potential on the quark

mass and found that the variation (within sensible 𝜇 ranges) is minimal.
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Figure 2: Time dependence in the potential restricting the range of 𝑟 that we can consider valid. Shown for
two temperatures using the vector channel as an example.

Time window [𝑎𝜏] 𝑟 range [𝑎𝑠] 𝑟 range [fm] Temperatures [MeV]
13-14 1-3 0.12-0.37 352-141
17-18 1-4 0.12-0.49 281-141
19-22 1-5 0.12-0.61 235-141
21-26 1-5 0.12-0.61 201-141
24-30 1-6 0.12-0.74 176-141
24-33 1-6 0.12-0.74 156-141

Table 2: Range of displacements and temperatures allowed to best approximate time independence in𝑉 (𝑟, 𝜏).
Note that 𝑇pc = 181 MeV and thus the time windows below the solid line do not span this pseudocritical
temperature.

4.3 Cornell potential fits

The Cornell potential [12] is a phenomenological description of a confining potential applicable
to heavy quarks in QCD and is given by

𝑉 (𝑟) = −𝛼

𝑟
+ 𝜎𝑟 + 𝐷. (13)

Fits using (13) to our potential data are shown as solid curves in Figure 3. As can be seen these
reproduce the data well. When the string tension, 𝜎, in the Cornell potential is zero, this implies a
deconfined potential. In all cases above 𝑇pc, we find that 𝜎 decreases with increasing temperature,
confirming the expected thermal behaviour in the bottomonium system. Below𝑇pc the string tension
does not change within statistical errors.

5. Conclusion

The temperature dependence of the central interquark potential in the bottomonium system
using NRQCD quarks was explored. This work was an extension of [4] and use a momentum-space
approach which can improve the efficiency of the calculation. Clear thermal effects in this potential
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Figure 3: The central potential calculated from (7) (points), overlaid with a fit of these data to the Cornell
potential (13) (curves). Each plot contains all temperatures and r ranges listed in Table 2.

were observed using a method which decoupled systematic “time window” artefacts from physical,
thermal effects. A systematic flattening of the potential with increasing temperature above 𝑇pc was
observed, with no statistically significant variation in the potential for temperatures below 𝑇pc.

This work will be extended in a number of directions. The potential will be calculated at all
possible spatial separations, r, rather than just the on-axis values used here, and channels beyond
the pseudoscalar and vector S-wave states will be included. Also, a more robust definition of the
reduced quark mass will be developed. Finally, a direct comparison will be made between these
bottomonium results and those obtained for the charmonium potential using the same ensembles in
[6].
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