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Abstract. We investigate the properties of the pion quasiparticle in the thermal hadronic phase
of (2 + 1)-flavor QCD on the lattice at physical quark masses at a temperature 𝑇 = 128 MeV.
We find that the pion quasiparticle mass 𝜔0 = 113(3) MeV is significantly reduced relative to the
zero-temperature pion mass 𝑚0

𝜋 = 128(1) MeV, by contrast with the static screening mass 𝑚𝜋 =
144(3) MeV, which increases with temperature. On the other hand the pion quasiparticle decay
constant does not change much compared to the corresponding zero-temperature decay constant.
The difference of the vector- and axialvector spectral functions serves as an order parameter
of chiral symmetry restoration. By analyzing this quantity we conclude that chiral symmetry
restoration is already at an advanced stage in the spectral function.
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Table 1: Parameters and lattice spacing of the ensemble analyzed in this paper. The lattice spacing
determination is from Ref. [8].

𝛽/𝑎 𝐿/𝑎 6/𝑔2
0 𝜅𝑙 𝜅𝑠 𝑎 [fm]

24 96 3.55 0.137232867 0.136536633 0.06426(76)

1. Introduction

In the early universe the strongly interacting constituents, namely weakly coupled quarks and
gluons, were in a hot and dense phase which we now call Quark-Gluon Plasma (QGP). In this
phase no individual color charges can be assigned to a hadron due to color screening. However, as
a consequence of the continuous expansion, the universe has gradually cooled down. Finally –at a
certain temperature 𝑇𝑐– a phase transition to the confined hadronic phase occurred.

In order to estimate the bulk properties of the hadronic phase with increasing temperature,
often the hadron resonance gas (HRG) model is employed [1]. It describes the thermodynamic
properties of the system by the sum of partial contributions of non-interacting hadron species up to
a certain cut-off mass.

Here we extend previous 2-flavor studies on the pion quasiparticle [2, 3] to the (2+1)-flavor
case on an ensemble with physical quark masses. We present a modified dispersion relation for the
pion quasiparticle and use it to estimate the quark number susceptibility (QNS) on our ensemble.
Furthermore, we examine the Dey-Eletsky-Ioffe mixing theorem at finite quark mass [4–6].

In these proceedings we show the results presented at the Lattice conference in August 2022.
Updated results, together with a more detailed study of the pion quasiparticle and an investigation
of several aspects of chiral symmetry at a temperature 𝑇 = 128 MeV, are available in our recent
preprint [7].

2. Numerical setup

Our calculations are performed on an 𝑁f = 2 + 1 ensemble with tree-level O(𝑎2)-improved
Lüscher-Weisz gauge action and non-perturbatively O(𝑎)-improved Wilson fermions [9]. The
ensemble has been generated using version 2.0 of the openQCD package see, Ref. [10].

We employ a single gauge ensemble of size 24 × 963 of O(𝑎)-improved Wilson fermions with
physical quark masses at a temperature

𝑇 =
1
𝛽
=

1
24𝑎

= 127.9(1.5) MeV. (1)

The physical and algorithmic parameters are listed in Tab. (1). There exists a corresponding zero-
temperature Coordinated Lattice Simulations (CLS) [11] ensemble with identical parameters apart
from its time extent. For reference we quote the pion mass and the decay constant of this ensemble
determined in Ref. [12],

𝑇 = 0 : 𝑚0
𝜋 = 128.1(1.3) (1.5) MeV, 𝑓 0

𝜋 = 87.4(0.4) (1.0) MeV , (2)

where the first error is from the corresponding quantity in lattice units, and the second is from the
lattice spacing determination of Ref. [8].
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3. Preliminaries

3.1 Basic definitions

We define the pseudoscalar density, the vector current and the axial- vector current as

𝑃𝑎 (𝑥) = 𝜓̄(𝑥)𝛾5
𝜏𝑎

2
𝜓(𝑥) , 𝑉𝑎

𝜇 (𝑥) = 𝜓̄(𝑥)𝛾𝜇
𝜏𝑎

2
𝜓(𝑥) , 𝐴𝑎

𝜇 (𝑥) = 𝜓̄(𝑥)𝛾𝜇𝛾5
𝜏𝑎

2
𝜓(𝑥) , (3)

where 𝑎 ∈ {1, 2, 3} is an adjoint 𝑆𝑈 (2)isospin index, 𝜏𝑎 is a Pauli matrix and 𝜓(𝑥) is a Dirac field
flavor doublet. With the aid of the partially conserved axial current (PCAC)-relation

𝜕𝜇𝐴
𝑎
𝜇 (𝑥) = 2𝑚PCAC𝑃

𝑎 (𝑥) , (4)

one can relate the screening pseudoscalar correlator to the screening axial correlator projected to
zero spatial momentum,

𝐺𝑠
𝑃 (𝑥3, 𝑇, p = 0) = − 1

4𝑚2
PCAC

𝜕2

𝜕𝑥2
3
𝐺𝑠

𝐴(𝑥3, 𝑇, p = 0). (5)

The asymptotic form of the static screening axial correlator,

𝛿𝑎𝑏𝐺𝑠
𝐴(𝑥3, 𝑇, p = 0) =

∫
d𝑥0d2𝑥⊥⟨𝐴𝑎,imp

3 (𝑥)𝐴𝑏,imp
3 (0)⟩ 𝑥3→∞

= 𝛿𝑎𝑏
𝑓 2
𝜋𝑚𝜋

2
𝑒−𝑚𝜋 𝑥3 , (6)

defines the screening pion mass 𝑚𝜋 and the screening decay constant 𝑓𝜋 .

3.2 Pion velocity and modified dispersion relation

In Refs. [13, 14] Son and Stephanov have shown that

𝜔p = 𝑢(𝑇)
√︃
𝑚2

𝜋 + p2 , for any 𝑇 ≲ 𝑇𝐶 (7)

describes the real part of the dispersion relation of a pion quasiparticle in the low-temperature phase
of QCD. The temperature-dependent parameter 𝑢 indicates that the thermal medium breaks Lorentz
invariance and is accessible from lattice calculations. Under the assumption that the pion dominates
the Euclidean two-point functions of the axial current time component 𝐴0 and of the pseudoscalar
density 𝑃, two estimators

𝑢𝑚 =

−
4𝑚2

𝑞

𝑚2
𝜋

𝐺𝑃 (𝑥0, 𝑇, p = 0)
𝐺𝐴(𝑥0, 𝑇, p = 0)

�����
𝑥0=𝛽/2


1/2

, (8)

𝑢 𝑓 =
𝑓 2
𝜋𝑚𝜋

2𝐺𝐴(𝛽/2, 𝑇, p = 0) sinh(𝑢 𝑓𝑚𝜋𝛽/2) , (9)

for the pion velocity can be obtained [2, 3].
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Figure 1: Left panel: Renormalized screening correlation function 𝐺𝑠
𝑃
(𝑥3, 𝑇)/𝑇3 and the result of the

fit. The chosen fit interval is 𝑥3/𝑎 ∈ [21, 41]. Right panel: Renormalized screening correlation function
𝐺𝑠

𝐴
(𝑥3, 𝑇)/𝑇3 and the result of the fit with a prior from 𝐺𝑠

𝑃
(𝑥3, 𝑇). The chosen fit interval in this case is

𝑥3/𝑎 ∈ [37, 48].

4. Results

4.1 Pion quantities at finite temperature

Making use of the PCAC-based relation (5), a one-state fit ansatz for the corresponding
correlation functions can be formulated in the form

𝐺𝑠
𝐴(𝑥3, 𝑇, p = 0) =

𝐴2
1𝑚1

2
cosh[(𝑚1(𝑥3 − 𝐿/2))] , (10)

𝐺𝑠
𝑃 (𝑥3, 𝑇, p = 0) = −

𝐴2
1𝑚

3
1

8𝑚2
PCAC

cosh[(𝑚1(𝑥3 − 𝐿/2))] . (11)

The results of the correlated fits are shown in Fig. 1. Exploiting the better signal-to-noise ratio
the screening pion mass 𝑚𝜋 was first extracted using the pseudoscalar correlator 𝐺𝑠

𝑃
. Next, the

axial correlator 𝐺𝑠
𝐴

has been fitted using the fit parameters obtained from 𝐺𝑠
𝑃

as a prior. Making
use of Eq. (6) the screening decay constant 𝑓𝜋 can be extracted in terms of the fit parameter 𝐴1 via

𝑓𝜋 = 𝐴1
√︁

sinh(𝑚1𝐿/2) . (12)

The corresponding quasiparticle quantities can be obtained using the estimator 𝑢𝑚 and the results
are listed in Table 2. At finite temperature we observe a ‘splitting’ into a higher screening pion
mass 𝑚𝜋 = 144(3) MeV and a lower quasiparticle mass 𝜔0 = 113(3) MeV, relative to the zero-
temperature pion mass 𝑚0

𝜋 = 128(1) MeV [see Eq. (2)]. The screening pion decay constant 𝑓𝜋 =

72(1) MeV behaves in the opposite way and is 17% lower than the zero-temperature pion decay
constant 𝑓 0

𝜋 = 87(1) MeV.1 However, the quasiparticle decay constant 𝑓 𝑡𝜋 = 𝑓𝜋/𝑢𝑚 = 91(2) MeV
is certainly no smaller than 𝑓 0

𝜋 . We also find that the two estimators 𝑢 𝑓 and 𝑢𝑚 of the pion
velocity agree very well and additionally differ significantly from unity, indicating a clear breaking
of Lorentz boost invariance.
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Table 2: Summary of the results of the E250 thermal ensemble with 𝑁𝜏 = 24. The pion quasiparticle mass
𝜔0 is calculated using 𝜔0 = 𝑢𝑚𝑚𝜋 and the quasiparticle decay constant 𝑓 𝑡𝜋 is obtained using 𝑓 𝑡𝜋 = 𝑓𝜋/𝑢𝑚.
Note that in Ref. [7] we obtained a slightly more precise value for the pion decay constant including the
𝑃𝐴0-correlator.

𝑚𝜋/𝑇 1.121(21)
𝑓𝜋/𝑇 0.558(14)
𝑢 𝑓 0.787(16)
𝑢𝑚 0.786(18)
𝑢 𝑓 /𝑢𝑚 1.001(27)
𝜔0/𝑇 0.881(23)
𝑓 𝑡𝜋/𝑇 0.710(19)

4.2 Dey-Eletsky-Ioffe mixing theorem at finite quark mass

In the chiral limit at temperatures well below the chiral phase transition, the heat bath is
dominated by massless pions. Using PCAC current algebra, Dey, Eletsky and Ioffe have shown
that to order 𝑇2 the vector and axial-vector spectral functions can be obtained from their vacuum
equivalents [4–6],

𝜌𝑉 (𝜔, p, 𝑇) = (1 − 𝜖)𝜌𝑉 (𝜔, p, 𝑇 = 0) + 𝜖 𝜌𝐴(𝜔, p, 𝑇 = 0) , (13)
𝜌𝐴(𝜔, p, 𝑇) = (1 − 𝜖)𝜌𝐴(𝜔, p, 𝑇 = 0) + 𝜖 𝜌𝑉 (𝜔, p, 𝑇 = 0) , (14)

where 𝜖 ≡ 𝑇2/(6( 𝑓 0
𝜋)2) is a temperature dependent coefficient. As an immediate consequence, the

difference of the two spectral functions is proportional to the zero-temperature equivalent,

𝜌𝑉 (𝜔, p, 𝑇) − 𝜌𝐴(𝜔, p, 𝑇) = (1 − 2𝜖) [𝜌𝑉 (𝜔, p, 𝑇 = 0) − 𝜌𝐴(𝜔, p, 𝑇 = 0)] , (15)

with the proportionality factor given by (1 − 2𝜖). Thus, this quantity serves as an order parameter
for chiral symmetry restoration and should be investigated even for non-zero quark mass. Therefore,
we have analysed the ratio of the difference (𝑉 − 𝐴) of the corresponding temporal thermal corre-
lators and the difference (𝑉 − 𝐴)rec of the reconstructed temporal correlators at vanishing spatial
momentum. The reconstructed correlator is defined as the thermal correlator that would be realized
if the spectral function would not change when the temperature is switched on [15],

𝐺rec
𝐽 (𝑥0, 𝑇, p) =

∑︁
𝑚∈Z

𝐺𝐽 (𝑥0 + 𝑚𝛽, 0, p) (𝐽 ∈ {𝑉, 𝐴}). (16)

As can be seen from Fig. 2, the difference ‘𝑉 − 𝐴’ shows a significant reduction by a factor of
≈ 0.67. Consequently, the spectral function must have changed during the transition from 𝑇 = 0
to 𝑇 = 128 MeV. Hence, chiral symmetry restoration is already at an advanced stage in the spectral
function. Due to Eq. (15) we would expect the ratio to be flat. In the lattice data, we do observe a
flat behaviour of the ratio in the interval 𝛽/4 ≤ 𝑥0 ≤ 3𝛽/4.
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Figure 2: Left panel: The reconstructed correlator for the difference ‘𝑉 − 𝐴’. Right panel: The difference
of ‘𝑉 − 𝐴’ at 𝑇 ≈ 128 MeV. All renormalization factors are included. Bottom panel: Ratio of the difference
‘𝑉 − 𝐴’ and the difference of the reconstructed correlator ‘(𝑉 − 𝐴)rec’

4.3 Quark number susceptibility (QNS)

On the lattice, we define the quark number susceptibility as

𝜒𝑞 (𝑥0, 𝑇) = 𝑍2
𝑉 (𝑔2

0) 𝛽
∫

d3𝑥 ⟨𝑉𝑎
0 (𝑥0, x)𝑉𝑎

0 (0, 0)⟩ , 𝑥0 ≠ 0 , (17)

where 𝑍𝑉 (𝑔2
0) is a non-perturbatively determined renormalization factor [16].

The result is shown in Fig. (3). As expected the (𝑉0 − 𝑉0)-correlator is very flat and the value
𝜒𝑞 (𝑇)/𝑇2 = 0.2293(47) has been determined using a correlated fit to the plateau. The QNS can
also be estimated using the hadron resonance gas model, where it is given as the sum

(𝜒𝑞)m. + (𝜒𝑞)b. (18)

with
(𝜒𝑞)m./b.

𝑇2 =
2𝛽3

3

∑︁
multiplets

(2𝐽 + 1)𝐼 (𝐼 + 1) (2𝐼 + 1)
∫

d3p
(2𝜋)3 𝑓

𝐵/𝐹
p (1 + 𝑓

𝐵/𝐹
p ) , (19)

being the mesonic and baryonic contribution, respectively. The summation includes all multiplets
of spin 𝐽 and isospin 𝐼 and 𝑓

𝐵/𝐹
p = 1/[𝑒𝛽𝜔p ∓ 1] denote the Bose-Einstein and Fermi-Dirac

1Note that in this work the pion decay constant differs by a factor of
√

2.
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Figure 3: Quark number susceptibility extracted from the local vector current correlator, Eq. (17). The mean
and error have been obtained from a correlated fit in the range [3,21].

77.9%

8.1%

7.3%

3.8%
2.9%

pion
vector- and pseudoscalar meson octet without 𝜌
𝜌 vector meson
baryon octet and decuplet
heavier meson and baryon resonances up to 2.0 GeV

Figure 4: Relative composition of the total quark number susceptibility predicted by the hadron resonance
gas model.

distributions, respectively. Resonances up to a mass of 2 GeV are included in the summation and
we obtain 𝜒𝑞 (𝑇)/𝑇2 = 0.2428 which is 5.8% above the aforementioned lattice estimate. By far the
greatest contribution to the QNS is made by the pion (77.9%). The relative contributions of the
remaining hadron species are visualized in Fig. 4. Sticking to the interpretation that collisions of
pions with other hadrons are responsible for the modified dispersion relation, one could alternatively
estimate the QNS taking only pions into account. However, one would then make use of the modified
dispersion relation, Eq. (7) and integrate only up to a momentum cutoff Λ𝑝 = 400 MeV, where the
chiral effective theory has been seen to break down in Ref. [3]. Employing this model we obtain

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
8
1

Pion quasiparticle Ardit Krasniqi

𝜒𝑞 (𝑇)/𝑇2 = 0.2163 which is 5.3% below the lattice estimate. However, we would like to emphasize
that this approach has little predictive power as it strongly depends on the momentum cutoff Λ𝑝.

5. Conclusion

On a (2 + 1)-flavor ensemble at physical quark masses we have seen that at a temperature
𝑇 = 128 MeV the thermal medium gives rise to a modified dispersion relation for the pion [see
Eq. (7)]. The dispersion relation gets multiplied by a temperature dependent parameter 𝑢 ≈ 0.79
which can be interpreted as the group velocity of a massless pion excitation in the chiral limit.
Additionally, the pion velocity 𝑢 links the screening pion mass 𝑚𝜋 entering the modified dispersion
relation to the quasiparticle mass𝜔0, which can be interpreted as the pole mass. While the screening
mass increases relative to the zero-temperature pion mass when temperature is switched on, the
quasi-particle mass decreases at the same time.

Furthermore, analyzing the difference (𝑉 − 𝐴) of temporal Euclidean two-point functions at
zero and finite temperature, we conclude that chiral symmetry restoration is already at an advanced
stage in terms of the spectral function. Finally, we have compared the quark number susceptibility
𝜒𝑞/𝑇2 = 0.2293(47) on the lattice to the hadron resonance gas model estimate which was 5.8%
above the lattice estimate. By contrast to that, an approach where only the pion with its modified
dispersion relation was taken into account results in an estimate which is 5.3% below the lattice
estimate.

At the moment we are generating a thermal ensemble with the same parameters as the one
analyzed here except for the time extent 𝑁𝜏 = 20 corresponding to a temperature 𝑇 ≈ 149 MeV
right below the chiral phase transition.
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