
P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
7
8

Parallel tempering algorithm applied to the deconfinement
transition of quenched QCD
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QCD with infinite heavy quark masses exhibits a first-order thermal transition which is driven
by the spontaneous breaking of the global Z3 center symmetry. We analyze the corresponding
order parameter, namely the Polyakov loop and its moments, and show, with a rigorous finite size
scaling, that in the continuum limit the transition is of first order. We show that the use of a parallel
tempering algorithm can significantly reduce the large auto-correlation times which are mainly
caused by the supercritical slowing down. As a result, we calculate the transition temperature
F0)2 with per-mill precision, and the latent heat, carrying out controlled continuum and infinite
volume extrapolations.
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1. Introduction

In the case of physical quark masses, it is well known that the QCD thermal transition for vanishing
chemical potential is an analytic crossover [1]. For infinite heavy quark masses, QCD is reduced to
a pure gauge theory in which the quarks are static and can only propagate in time. In this scenario
QCD exhibits a 1st order thermal transition due to the spontaneous breaking of the underlying
global Z3 center symmetry. This symmetry breaking is related to the (de-)confinement transition
since the the corresponding order parameter, the Polyakov loop %, is linked to the free energy of
a static quark. In the confined phase, an infinite amount of energy is needed to remove a quark
from the system and |〈%〉| = 0. In contrast to that, in the deconfined phase, |〈%〉| takes a finite
non-vanishing value. One main feature of a 1st order phase transition is the existence of a latent
heat which was calculated recently in the continuum limit for quenched QCD [2, 3]. Here the key
to calculate the latent heat is the separation of the configurations in hot and cold "phases". In these
regimes the trace anomaly is evaluated and the difference is taken, yielding the latent heat up to
a normalization factor. We extend this work by calculating the latent heat in the continuum and
infinite volume limit, and by applying a parallel tempering algorithm in V, originally applied to spin
models [4, 5]. Several extensions followed with applications to lattice QCD [6–8], which treated the
quark masses, coupling and the hopping parameter (or their combinations) as dynamical variables.
Progress could also be achieved for the problem of topological freezing and twist-sectors [9–12]. In
our case, parallel tempering in V allows us to perform a high precision study of the deconfinement
transition of quenched QCD since it lowers tremendously the high auto-correlation times caused
by supercritical slowing down. Simulating real phase transitions on finite systems gets more and
more severe as the volume is increased since the system tends to stick in one phase. By collecting
contributions from other ensembles at different couplings this effect can be significantly reduced.
We calculate the transition temperature F0)2 with per-mill precision, the trace anomaly and latent
heat. This contribution is mainly based on our work [13].

2. Analysis

In quenched QCD the Polyakov loop %works as a true order parameter to probe the center symmetry
breaking. % transforms non-trivially underZ3 and can be defined as

% =
1
#3
B

∑
®G
% ®G =

1
#3
B

∑
®G

tr

[∏
g

*4(®G, g)
]
, (1)

where #B stands for the spatial extension of the lattice and ®G and g indicate the spatial and temporal
position respectively.
In the case of a 1st order phase transition % should show a discontinuity at the critical coupling
V2 in the thermodynamic limit, whereby its susceptibility j diverges linearly with the physical
volume. For a 2nd order phase transition this behavior is accompanied by a critical exponent.
Hence, analyzing the peak of the susceptibility determines the type of phase transition and the
corresponding transition temperature )2 . Another way to extract )2 is the zero-crossing of the
third-order Binder cumulant 13 of the absolute value of the Polyakov loop. The susceptibility and
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the Binder cumulant are defined as

j = #3
B

(
〈|% |2〉 − 〈|% |〉2

)
, 13 =

〈(|% | − 〈|% |〉)3〉
〈(|% | − 〈|% |〉2〉3/2

. (2)

The third Binder cumulant is a measure of the skewness of the |% | distribution. Simulating far
away from V2 , i.e. where the system is deep in one phase, there is a single (Gaussian-) peak in the
distribution. As one comes closer and closer to the critical coupling, a second peak evolves which
corresponds to the 2nd phase of the system. As soon as V2 is reached, both peaks have the same
shape and the distribution is completely symmetric which leads to a vanishing skewness. While
strictly speaking there are no phases in a finite system, we loosely use the word phase to describe
the (de-)confined regimes.

3. Parallel tempering to improve on supercritical slowing down

Simulating real phase transitions makes us face the phenomenon of critical, in the case of 2nd
order transitions, and supercritical slowing down for 1st order phase transitions. Both cause a high
auto-correlation times, which one can significantly reduce by employing parallel tempering in V
[5]. The mechanisms behind critical and supercritical slowing down are similar, but not completely
identical. In the case of a 1st order phase transition various quantities show a discontinuity at
) = )2 . For SU(3) quenched QCD the effective potential of the Polyakov loop contains three
degenerate deconfined minima and one confined minimum. These statements are only true in the
thermodynamic limit. So in a finite volume a temperature range around )2 exists, in which the
system can be in both phases and tunnel between them. These states are split by the energy Δ� ,
which is proportional to the volume + . Since both phases have to be sampled, this gets more severe
as + is increased.
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Figure 1: Effective potential of the absolute value of the Polyakov loop for various volumes in quenched
QCD, after employing parallel tempering. The barrier between both phases increases with the volume.
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The consequence of this is a high auto-correlation time if tunneling is not sampled, since the system
tends to stick in one phase. In Fig. 1 the effective potential of the absolute value of the Polyakov
loop is shown and one can see that the barrier between the two phases increases with the volume.
In the case of a 2nd order phase transition a diverging correlation length is expected, which leads
to a high auto-correlation time as well. In both cases, it is possible to reduce the auto-correlation
time tremendously by using the parallel tempering algorithm, thus performing multiple simulations
at different V. These are distinct Markov processes with an overlapping equilibrium distribution.
Parallel tempering adds to the "standard" Markov transitions within these single sub-ensembles
anotherMetropolis accept/reject step to swap configurations between pairs of them, with a swapping
probability %B given by

%B (8, 9) = min
(
1, 4−ΔH

)
, (3)

ΔH =
(
H 9 (0) + H8 (1)

)
− (H8 (0) + H 9 (1)). (4)

Here 8, 9 indicate two sub-ensembles and 0, 1 their configurations, respectively [6]. This means that
swapping configurations is more likely for neighboring ensembles. As a result the auto-correlation
time within the sub-ensembles is reduced, since they gather contributions of the other ensembles
at different couplings. Hence both phases of the system around V2 can be sampled. The price
to pay is a resulting correlation between the sub-ensembles. In Fig. 2 the advantages of parallel
tempering compared to standard brute force simulations are clearly visible. With the same amount
of computer time, the statistical errors of the tempering results are smaller and describe much better
a high statistic result, especially close to V2 .

Figure 2: Polyakov loop susceptibility as a function of the coupling V in quenched QCD on a 323 × 8 lattice.
The red squares correspond to parallel tempering simulations and the red band indicates the interpolation
between them obtained by the correlated multihistogram method. Compared to the standard brute force
simulations (black crosses) with the same amount of computer time, they give a much better description of
the high statistic result (blue band).

For parallel tempering simulations the distance between neighboring ensembles ΔV and their total
number = play a crucial role. Increasing ΔV suppresses the probability to swap configurations
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and the ensembles collect more contributions from their neighbors until they "decouple" and run as
independent simulations. For a suitable acceptance rate of swapping updates, the action distributions
of neighboring ensembles should clearly overlap, which can be obtained by tuning = and ΔV. In Fig.
3 the auto-correlation time of the Polyakov loop for different sets of parallel tempering simulations
is compared to standard methods. The lowest auto-correlation times are achieved with the densest
and largest V−grid.

Figure 3: Left panel: Auto-correlation time of the Polyakov loop as a function of the coupling V on a
323 × 8 lattice using parallel tempering (filled points) and brute force simulations (unfilled points) with the
same amount of computer time. ΔV indicates the V-spacing between the sub-ensembles and = stands for
the total number of them. Right panel: Number of statistically independent configurations divided by the
auto-correlation time as a function of V.

It is important to note, that the major driver to the auto-correlation time at one V value comes from
instances inwhich the same stream contributes. Thereforewe order theMonte Carlo chain according
to the stream ID number, whereby the chronological order of each stream is kept. This way the
contributions of each single stream are brought together additionally minimizing the correlation
between blocks in the jackknife analysis.

4. Transition temperature and latent heat

To relate the action dependent value of V to a more generic transition temperature, it is necessary
to set the scale. In this study we use F0 based on the Wilson flow [14–16]. Measured in lattice
units F0/0, we find no significant volume dependence, since the effects are comparable with the
statistical errors. With this quantity a transition temperature can be defined as

F0)2 =
F0
0#C

(V2). (5)

In the infinite volume limit, the definition of V2 by the peak of the susceptibility or vanishing 13
should not play any role. Both results have to agree in the thermodynamic limit, since the peak of j
diverges linearly, the width vanishes linearly and the slope of 13 (close to V2) increases linearly with
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the volume. This behavior is clearly shown for the transition temperature in Fig. 4 after continuum
extrapolation.

Figure 4: Continuum extrapolated transition temperature F0)2 from 13 = 0 (left panel) and peak of the
susceptibility (right panel) as a function of the inverse physical volume 1/(!))3 = (#C/#B)3.

All in all 256 different analyzes [13] contribute to the systematic uncertainties which come from the
two definitions of V2 , choice of degree of the (un-)correlated fits to the momentum with different
cutoffs for the eigenvalues, WSC or SSC scale for F0, degree of fit to F0/0, and the range and
degree of the continuum fit. We finally obtain a per-mill accurate result of

F0)2 = 0.25384(11)stats(21)sys. (6)

A clear sign of a 1st order phase transition is a non-vanishing latent heat. This quantity can be
seen as the gap between the energy density n of both phases, which shows a discontinuity at the
transition. On the lattice a suitable quantity which includes the energy density is the so-called trace
anomaly defined as

n − 3?
)4 = #4

C )
mV

m)
[(0 − () ] . (7)

It can be understood as a measure for the deviation of the system from an ideal gas. Here (0 and ()
are the gauge action densities at vanishing and finite temperature respectively. The trace anomaly
is evaluated in the "hot" (deconfined) and "cold" (confined) phases and the difference is taken to
calculate the latent heat according to

Δ�

)4 := Δ
n − 3?
)4 = #4

C )
mV

m)
[(cold − (hot] . (8)

The procedure is the following: We reweight our closest ensemble to V2 right to the critical
couplings and calculate the minimum between the two peaks of the |% | histogram. This minimum
serves as a cut between the hot and the cold phases of the system [2, 3]. Then the trace anomaly is
calculated for configurations whose |% | is above and below the cut. One feature of this approach is
the exponentially decreasing systematic error with the volume which can be seen in Fig. 5. Here
|% | histograms for various volumes are shown and one can see that the first peak, indicating the
confined phase, tends to 0 as expected.
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Figure 5: Histograms of the absolute value of the Polyakov loop and trace anomaly as function of the
Polyakov loop bin for three different volumes.

The continuum and infinite volume extrapolations of the latent heat can be done simultaneously
and the results are shown in Fig. 6.

Figure 6: Latent heat as a function of the inverse physical volume for our #C = 5, 6, 8, 10 ensembles and
combined limit including the continuum extrapolation. In addition continuum extrapolated finite volume
results from [3] are shown.

Including different numbers of Polyakov loop bins, in- or excluding #C = 5 in the continuum
extrapolation, degree of log-polynomial fit to extract the cut, in- or excluding !) = 4.5 in the
infinite volume extrapolation, using multihistogram or single-beta reweighting to extract V2 in our
systematic error analysis we get

Δ

[
n − 3?
)4

]
= 1.025(21)stats(27)sys. (9)
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The small but clearly non-vanishing value of the latent heat shows that thermal transition in quenched
QCD is a weak 1st order transition in the context of SU(N) theories [17]. The major driver of the
systematic error is the definition of V2 and the selection of #C ensembles to the continuum limit
which contribute 1.32% and 1.53% to the error. Further details can be found in [13].
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