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1. Introduction

Strong magnetic fields are known or expected to be present in heavy-ion collisions, neutron
stars and the early universe [1]. Thus, a proper understanding of their influence on the structure of
matter, both at finite temperature and at finite density, is of great relevance. The framework best
suitable to describe these phenomena is quantum chromodynamics (QCD), the theory of strong
interactions. However, QCD at finite density is plagued by the infamous complex-action problem,
preventing the use of conventional Monte-Carlo methods. One way to, at least partially, circumvent
this issue is to resort to the use of low-energy effective theories or toy models.

Examples for such toymodels are four-Fermi theories like the Gross-Neveu (GN)model [2] and
some of its variants, which have not only been used successfully to model low-energy properties of
QCD but can also be found in abundance in the context of condensed-matter physics [3, 4]. These
models have, so far, most commonly been studied in the mean-field approach, which is equivalent
to the limit where the number of fermion flavors tends to infinity and quantum fluctuations are
suppressed.

In this contribution we first summarize the most important features of the (2 + 1)-dimensional
GN model at finite temperature, density and magnetic field, obtained in the mean-field limit. We
then take a first step towards the goal of studying QCD in a magnetic field via effective models
by investigating the full GN model at finite flavor number on the lattice, albeit restricting for now
to vanishing chemical potential. The case of finite density will then be studied in a forthcoming
publication.

2. The Gross-Neveu model

The Gross-Neveu model is defined by the Lagrangian

L = k̄i/mk + 62

2#f
(k̄k)2 , (1)

where 62 is a coupling constant and #f denotes the number of fermionic flavors, which are summed
over implicitly in (1). With the help of an auxiliary scalar field f, one can bring (1) into an
equivalent form, which reads, after introducing in the usual ways a chemical potential ` and an
external vector field �`,

L = ik̄( /m + f + `W0 + 84 /�)k +
#f

262f
2 . (2)

Here, 4 denotes the elementary electric charge. This model has a discrete chiral symmetry,

k → iW5k , k̄ → ik̄W5 , f → −f , (3)

which may be spontaneously broken by the formation of a chiral condensate 〈k̄k〉. The latter can
be shown to be proportional to the expectation value of f, i.e.

〈k̄k〉 = i#f

62 〈f〉 . (4)

Apart from spontaneous chiral symmetry breaking, the GN model also shares other important
features with QCD, such as renormalizability (in three dimensions or lower) and asymptotic freedom
(in two dimensions).
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3. The large-#f limit

In the limit where #f → ∞, computing the path integral in the GN model in 3 dimensions
reduces to a minimization problem of the effective action

(eff =
1

262

∫
33G f2(G) − tr log� [f] , (5)

with the Dirac operator

� [f] = /m + f + `W0 + i4 /� . (6)

In fact, in this limit the mean-field approach becomes exact. Restricting to a homogeneous auxiliary
field, f(G) = f, and assuming the (homogeneous) magnetic field � to lie perpendicular to the
spatial plane, the effective action in 2 + 1 dimensions, in a reducible 4 × 4 representation of W
matrices, can be computed in closed form [5]:

(eff
+

=
f2

262
'

−
√

2(4�)3/2
c

Z

(
−1

2
,
f2

24�

)
+ f4�

2c

− 4�

2cV

∞∑
;=0

3;

[
log

(
1 + 4−V

(√
f+24�;+`

) )
+ (`→ −`)

]
,

(7)

where + denotes the volume of the system, 62
'
is the renormalized coupling constant, Z denotes the

Hurwitz zeta function, V is the inverse temperature and ; enumerates the discrete Landau levels with
their degeneracy factor 3; = 2−X;0. We have assumed for 4� to be non-negative. The minimization
of (7) with respect to f reveals a rich phase structure in the parameter space spanned by temperature
) , chemical potential `, and magnetic field �, see Fig. 1.
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Figure 1: Large-#f phase diagrams for various fixed external parameters (see also [6]). The scale f0 denotes
the value of the condensate 〈f〉 obtained at vanishing ) , ` and �.

We summarize the most important observations one makes in the large-#f limit as follows:

• At ` = 0 the chiral condensate 〈f〉 grows monotonically as a function of �, i.e., one finds
magnetic catalysis [7]. The critical temperature)2 of the transition between the spontaneously
broken phase (where 〈f〉 ≠ 0) and the symmetric phase (where 〈f〉 = 0) grows with �.
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• At ) = 0 the condensate experiences magnetic catalysis for some ` and inverse magnetic
catalysis, i.e., a decrease with �, for others [8]. The critical chemical potential `2 is non-
monotonic in �. For weak magnetic fields there are multiple first-order phase transitions in
` between the broken and symmetric phases due to the Landau level structure.

• For magnetic fields 4� ≥ f2
0 the lowest Landau level (; = 0 in Eq. (7)) dominates and there

are no more multiple transitions. Furthermore, as long as � is not too large, one finds the
counter-intuitive situation where increasing the temperature can actually cause a transition
from the symmetric to the spontaneously broken phase.

• For very strong magnetic fields the condensate grows monotonically with � for all tempera-
tures and chemical potentials, while )2 and `2 both increase with �.

4. Lattice setup

We now wish to study what remains of the complicated phase structure shown in Fig. 1 when
going beyond the large-#f limit, i.e., when taking into account bosonic fluctuations. In particular,
we study the case of one flavor of (reducible, i.e., 4-component) fermions, #f = 1. Since we
are interested in the chiral properties of the theory, we employ the overlap operator [9] in our
simulations, namely in the form that was advocated by H. Neuberger [10]. We introduce the scalar
field f in a way that carries over the Dyson-Schwinger equation (4) to the discretized theory and we
couple the chemical potential in a chirally-symmetric manner, as suggested by Gavai and Sharma
[11]. The full Dirac operator in our setup then reads

� = �ov + (f + `W0)
(
1 − 0

2
�ov

)
, (8)

where �ov is the usual massless overlap operator [10] with a negative Wilson mass parameter
< = −1 and 0 denotes the lattice constant. Themagnetic field, which we again choose homogeneous
and perpendicular to the spatial plane, is contained in �ov via * (1) gauge links. These contain
appropriately chosen boundary terms, which ensure that the system is physically equivalent to one
with a constant magnetic flux Φ through the entire lattice [12]. Moreover, denoting the area of the
spatial plane by !2, the flux is quantized in terms of an integer 1 according to

Φ = �!2 =
2c
4
1 , (9)

due to the periodic boundary conditions on the finite lattice, and 1 is restricted to a finite range,
1 ∈

{
0, . . . , #2

s
}
, where #s denotes number of lattice points in each spatial direction such that

! = 0#s.
In the overlap formalism the continuum Z2 symmetry (3) is mapped to the lattice in the

following way:

k → iŴ5k , k̄ → ik̄W5 , f → −f , (10)

where Ŵ5 = W5(1 − 0�ov). As was mentioned above, one can furthermore show that the identity
(4) has an exact counterpart in our lattice formulation as well, relating 〈f〉 to the definition of the
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chiral condensate for Ginsparg-Wilson fermions [13]:

〈f〉 = −#f

62

〈
k̄

(
1 − 0

2
�ov

)
k

〉
. (11)

In the present setup the only dynamical degree of freedom is f, which does not enter the
definition of the massless overlap operator �ov, involving an expensive operator sign function. We
can thus compute this sign function once and for all for a given magnetic field, which reduces the
computational cost drastically. In fact, this even allows us to compute �ov and, by extension, the
full operator � exactly, i.e., without relying on any approximations. This would not be feasible
in state-of-the-art simulations of gauge theories, where the dynamical degrees of freedom directly
enter the sign function, which one then has to re-compute for every update. For a more detailed
discussion about our lattice setup we refer to an upcoming publication, in which we also plan to
publish our simulation data.

In the following we consider lattices with spatial volumes #2
s ∈ {82, 122, 162} and various

temporal extents #t = 1/0) in order to study the temperature-dependence of the chiral condensate.
To avoid cancellations arising due to the two equivalent minima of the GN effective action present in
the phase of spontaneously broken chiral symmetry, we measure the absolute value of the auxiliary
field, 〈|f |〉, as an order parameter.

We set the scale via the value of the order parameter at vanishing � and ` and at the lowest
temperature considered,

f0 = 〈|f |〉�=0, `=0, ) ≈0 . (12)

Since we cannot reach ) = 0 exactly in our simulations, we should, for reasons of consistency, at
least attempt to keep the temperature )0 ≈ 0, at which we set the scale, constant when approaching
the two limits of vanishing lattice spacing and infinite volume, respectively. We do so in this work,
but choose different values of )0 for the two respective limits in our setup.

We change the lattice spacing 0 by varying the coupling constant 62, keeping the physical
value of f0 constant in the process, in order to extrapolate to the continuum limit. We furthermore
approach the infinite-volume limit by increasing the number of spatial lattice points while keeping
0 and f0 fixed.

Notice that the theory does not suffer from a complex-action problem at ` ≠ 0 as long as � = 0
(and vice versa), which one can prove by using charge-conjugation symmetry. In the combined
case, where both the magnetic field and the chemical potential are non-vanishing, however, this
argument does not hold anymore and indeed a complex-action problem is present. This case will
be discussed in detail elsewhere.

5. Results

As a crosscheck to test the discretization (8) we first restrict to the case of vanishing magnetic
field, where the model is better understood. In particular, we show the temperature-dependence of
the order parameter obtained at ` = 0 = � in Fig. 2a. One observes the expected behavior of the
transition becoming more pronounced as the volume increases, approaching a second-order phase
transition for infinitely large volumes. Notice that for finite volume 〈|f |〉 will never vanish exactly.
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Figure 2: Infinite-volume extrapolation of the )- and `-dependence of the order parameter at vanishing
magnetic field.

A similar conclusion can be drawn from the `-dependence of 〈|f |〉 at low temperatures shown
in Fig. 2b. Here, mean-field calculations suggest that the transition is of second order for all finite
temperatures and of first order (in the Ehrenfest sense) at ) = 0. However, previous lattice studies
found that the transition for finite flavor numbers might instead be of weak first order even for
non-vanishing temperatures [14], which has been supported by analytical calculations [15]. The
small lattice sizes considered in this work obviously do not allow us to determine the order of the
phase transition definitively, but the transition should sharpen with increasing volume either way
and we indeed observe this.

Having gained some confidence in our discretization, we now consider a finite externalmagnetic
field and study the �-dependence of the chiral condensate for low temperatures and vanishing
chemical potential. We show both a continuum and an infinite-volume extrapolation in Figs. 3a and
3b, respectively.
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Figure 3: �-dependence of the order parameter at low temperatures and vanishing chemical potential.

First looking at the former, it appears as if the condensate would decrease for the lowest non-
vanishing value of the magnetic field (corresponding to 1 = 1 in Eq. (9)), before increasing again
for all larger values of �. We can, however, by taking into account larger volumes in Fig. 3b, clearly
identify this as a finite-size effect1 as it gradually disappears as the volume is increased. On the

1A more detailed analysis on this issue will be presented in an upcoming publication.
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largest volume we observe clear evidence for magnetic catalysis, i.e., a monotonic increase of 〈|f |〉
with �. This result is in qualitative agreement with the behavior found in mean-field [7] as well as
beyond-mean-field [6] calculations, which does not come as a surprise, as it has been argued to be
a universal, model-independent feature [5].

The situation may, in principle, change for higher temperatures. In fact, in QCD one observes
a decrease of the chiral condensate with the magnetic field around the transition temperature [16].
This inverse magnetic catalysis, however, is caused by a delicate interplay between quarks and
gluonic degrees of freedom [17]. Hence, in accordance with mean-field results [7], we should not
expect to observe this effect in our setup, due to the absence of gluons. We confirm this claim by
investigating how the )-dependence of the condensate changes with the magnetic field in Fig. 4.
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Figure 4: )-dependence of the order parameter as a function of the magnetic field for #s = 12, ` = 0 and
0f0 ≈ 1.004.

More precisely, we observe that for low temperatures, i.e., within the broken phase, themagnetic
field causes an increase of the chiral condensate. Close to and beyond the phase transition, however,
the condensate is largely independent of �. This is consistent with the expectation since magnetic
catalysis, obviously, only occurs in the broken region. The latter should, in principle, expand with
�, but this effect is likely negligible for the small magnetic fields we consider. We have checked
this by studying the �-dependence of the critical temperature )2 of the chiral phase transition,
determined via the peak of the chiral susceptibility

j = 〈f2〉 − 〈|f |〉2 (13)

as a function of ) . We find that, indeed, the value of the critical temperature, )2 ≈ 0.14f0, changes
only very little with �.

By performing the appropriate extrapolations, we find that the qualitative features of the chiral
condensate at finite) and � shown in Fig. 4 persist when going to the infinite-volume and continuum
limits, with the finite-size effects mentioned above again disappearing for large volumes.

6. Summary & Outlook

In this contribution we have investigated the phase diagram in the (), �) plane of the (2 + 1)-
dimensional Gross-Neveu model (1) beyond the mean-field limit for one reducible fermion flavor
on the lattice, using overlap fermions. We find that the magnetic catalysis phenomenon, i.e., an

7
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enhancement of chiral symmetry breaking due to an applied magnetic field, predicted by large-
#f studies, persists when taking into account bosonic quantum fluctuations at #f = 1. This is
consistent with analytical calculations going beyond the mean-field approximation using optimized
perturbation theory (OPT) to investigate the #f = 2 case [6].

Clearly, this result does not represent QCD, where gluonic degrees of freedom play a significant
role in the phase structure, giving rise to the inverse catalysis phenomenon at finite temperature.
Going forward, there are many ways to systematically improve the degree to which we can ap-
proximate QCD using toy models. For instance, one could attempt to incorporate interactions with
gluons by coupling the fermions to the Polyakov loop. Combined with the introduction of a suitable
magnetic-field-dependence of the coupling constant, this has been shown to reproduce known QCD
features in the mean-field Nambu–Jona-Lasinio (NJL) model in [18]. The NJL model is, in a sense,
an extension of the GN model, exhibiting a continuous chiral symmetry as well as three more
bosonic degrees of freedom, arising from an additional pseudoscalar-isovector interaction channel.
In another step towards QCD these pseudoscalar degrees of freedom could, together with the f
field, furthermore be endowed with kinetic terms to allow for their interpretation as dynamical
mesons.

Since ultimately we would like to study QCD at finite density we will perform a similar analysis
to the one presented in this work also at finite chemical potential. When studying the system in
the (`, �) plane, one, however, has to deal with a complex-action problem and a more extensive
analysis is required. Our aim will be to investigate whether the inverse magnetic catalysis and
multiple phase transitions that occur in the mean-field limit persist when bosonic fluctuations are
taken into account. That this should indeed be the case has been argued in [6].
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