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three point functions. Recently, it was suggested that two-particle excited states that are
suppressed in two-point functions are enhanced in certain three point functions. Effective
theory suggests that such an enhancement increases for computations performed using
simulations with physical pion mass. We present results of our study then we include
two-particle interpolating fields and perform a variatonal analysis to obtain the energy
levels in the I = 1/2, I3 = +1/2 channel with simulations at the physical pion mass.
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1. Introduction

The study of nucleon structure quantities not only provides important information on
its internal structure but also these quantities enter in the investigation of a broad range of
physical processes from pion photoproduction, nuclear β-decay, neutrino physics, to searches
for new dark matter candidates for beyond the Standard Model (SM) physics. Neutrino
scattering (νℓn → ℓ−p) experiments, like NOva, DUNE require knowledge of the nucleon
axial form factors that enter in the determination of the differential scattering cross-section.
In this work we study the nucleon matrix elements of the isovector axial-vector current and
extract the axial form factors. Namely, we consider

MA(Q
2) = ⟨N(p⃗′, s′)|Aµ|N(p⃗, s)⟩, (1)

where Aµ is the axial vector current and N(p⃗, s) is the nucleon state with momentum p⃗

and spin s. In our setup we used the following kinematics

Q2 = −(p′ − p)2, p′
2
= p2 =M2

N , p⃗′ = 0.

The nucleon matrix elements of the isovector axial vector current can be written in
terms of two axial form factors as follows

MA = ūs′(p⃗
′)

[
γµGA(Q

2)− Qν

2mN
G̃P (Q

2)

]
us(p⃗), (2)

where we work in Euclidean time, GA(Q
2) is the isovector axial form factor and GP (Q

2)

is the isovector induced pseudoscalar form factor. We also consider the nucleon matrix
elements of the isovector pseudoscalar current that yields the isovector pseudoscalar form
factor G5

The Extended Twisted Mass Collaboration (ETMC) has generated three ensembles of
twisted mass clover-improved fermions with light, strange and charm quark masses tuned to
their physical values. We refer to these gauge ensembles as physical point ensembles. The
volume and lattice spacings of the threeNf = 2+1+1 ensembles analyzed are given in Table
1. Simulation details for these ensembles can be found in Refs. [6, 7]. Having three such
physical point ensembles allow us to to access systematics uncertainties introduced by the
lattice discretization avoiding the need for performing uncontrolled chiral extrapolations.

Table 1: In the first column we give the name of the ensemble, in the second the lattice size and
in the third the lattice spacing. For determining the lattice spacing we used fphys.π = f isoQCD

π =

130.4(2) value of the pion decay constant, as described in [7].

ensemble Vol. a[fm]

cB211.072.64 643 × 128 0.07957(13)
cC211.060.80 803 × 160 0.06821(13)
cD211.054.96 963 × 192 0.05692(12)
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In this contribution we present our latest results on the axial and pseudoscalar form
factors taking into account different excited states in the two and three-point functions.
For this study we use the three NF = 2 + 1 + 1 ensembles given Table 1.

For achieving a few percent precision in the computation of nucleon matrix elements
requires careful control of excited state effects. It has been suggested from chiral effective
theory that these form factors receive enhanced contributions from πN states [2–5]. The
importance of excited states effects in nucleon matrix element calculations has been demon-
strated by several lattice QCD studies [1, 11].It was suggested that including πN states in
the analysis can explain the deviation of the generalized Goldberger-Treiman (GT) rela-
tion [1]. The second topic of this contribution is an investigation of extending the basis of
interpolating fields in the nucleon channel to include the πN scattering state, that is ex-
pected to dominate the excited state contamination. This study is done using the Nf = 2

ensemble of twisted mass clover-improved fermion given in Table 2, generated with physical
pion mass [8].

Table 2

ensemble mπ/MeV L/fm afm mπL Nconf Nsample

cA2.09.48 134 4.4 0.091 2.97 600 48

2. Lattice methods

On the lattice the required matrix elements are obtained from the appropriate combi-
nations of two- and three-point correlation functions

C (Γ0, p⃗; ts, t0) =
∑

x⃗s

Tr
[
Γ0 ⟨JN (ts, x⃗s) J̄N (t0, x⃗0)⟩

]
e−ip⃗(x⃗s−x⃗0)

CA
(
Γ, q⃗, p⃗′; ts, tins, t0

)
=

∑

x⃗s,x⃗ins

Tr
[
Γ ⟨JN (ts, x⃗s)Aµ(tins, x⃗ins) J̄N (t0, x⃗0)⟩

]
e−i(x⃗s−x⃗0)p⃗′ e−i(x⃗ins−x⃗0)q⃗,

respectively, with JN the interpolating field of the nucleon, (t0, x⃗0) the source, Aµ the
axial vector current or pseudoscalar current, (tins, x⃗ins) the insertion, and (ts, x⃗s) the sink.
Γ0 = 1

2 (I+ γ0) and Γi are projectors acting on spin indices. Performing the spectral
decomposition of the two and three point functions we obtain (contributions above the first
excited states are neglected):

C(p⃗, t) = c0(p⃗)e
−E0(p⃗)t

(
1 +

(
c1(p⃗)

c0(p⃗)

)
e−∆E2pt

1 (p⃗)t

)
(3)

Cµ(Γk, q⃗, ts, tins) =

A0,0
µ (Γk, q⃗)e

−m0(ts−tins)−E0(q⃗)tins +A0,1
µ (Γk, q⃗)e

−m0(ts−tins)−E3pt
1 (q⃗)tins+

A1,0
µ (Γk, q⃗)e

−E3pt
1 (0)(ts−tins)−E0(q⃗)tins +A1,1

µ (Γk, q⃗)e
−E3pt

1 (ts−tins)−E3pt
1 (q⃗)tins ,

(4)
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where m0 is the nucleon mass and the coefficients in front of the exponentials are the overlap
terms for the two point

ci(p⃗) = Tr[Γ0⟨Ω|JN |Ni(p⃗)⟩⟨Ni(p⃗)|J̄N |Ω⟩] (5)

and three point function

Ai,j
µ (Γk, q⃗) = Tr[Γk⟨Ω|JN |Ni(⃗0)⟩⟨Ni(⃗0)|Aµ|Nj(p⃗)⟩⟨Nj(p⃗)|J̄NΩ⟩], (6)

respectively. Note that the spin indices in the overlap coefficients are suppressed. The
desired matrix elements are ⟨Ni(⃗0)|Aµ|Nj(p⃗)⟩ encoded in a fit parameter, which we obtain
by performing a combined fit for the two- and three-point functions and allowing them
to have different first excited state contamination. Note that the overlap factors in the
two- and three-point functions are different, therefore a state very much suppressed in the
two-point function can have significant contribution to the three-point function.

For the investigation of the contribution of the first Nπ state to the ground state in
the nucleon channel, we perform a generalized eigenvalue analysis to determine the optimal
linear combination of nucleon and πN states for the ground state.

We perform the group-theoretic construction of the lattice interpolators from a set of
basic single-nucleon and πN interpolators and solve the generalized eigenvalue problem for
the correlation matrix. We use the following basis of interpolators

Jp(p⃗) =
∑

x⃗

ϵabc (u
aT (x⃗)C γ5 d

b(x⃗))uc(x⃗) eip⃗x⃗, Jn(p⃗) =
∑

x⃗

ϵabc (d
aT (x⃗)C γ5 u

b)(x⃗) dc(x⃗) eip⃗x⃗

(7)

Jπ+(p⃗) =
∑

x⃗

˜̄d(x⃗) γ5 u(x⃗) e
ip⃗x⃗ , Jπ0(p⃗) =

∑

x⃗

ū(x⃗) γ5 u(x⃗)− d̄(x⃗) γ5 d(x⃗)√
2

eip⃗x⃗ (8)

JπN (p⃗N , p⃗π) = JN0(p⃗N ) Jπ+(p⃗π) , (9)

where Jp and Jn are the proton, and neutron, Jπ+ and Jπ0 the charged and neutral pion
and JπN is the πN interpolating field. The quark fields are Gaussian smeared with APE
smeared gauge fields entering the Gaussian smearing kernel.

We compute the following multi-hadron correlation functions: ⟨JN (tf , P⃗ ) J̄N (ti, P⃗ )⟩,
⟨JN (tf , P⃗ ) J

†
Nπ(ti, P⃗ , p⃗

′
N )⟩ and with Nπ operator at both source and sink time

⟨JNπ(tf , P⃗ , p⃗N ) J†
Nπ(ti, P⃗ , p⃗

′
N )⟩. We consider the N and Nπ system in the rest frame P⃗ = 0,

as well as in flight with non-zero total momenta |P⃗ |2 = {1, 2, 3} · (2π/L)2.
We project the creation and annihilation operators to the irreducible representations

(irreps) of the lattice rotational symmetry groups LG(P⃗ ) = OD
h , C

D
4v, C

D
2v, C

D
3v for the

sequence of rest and moving frames given above. To target the nucleon channel, we choose
those irreps, which contain the angular momentum J = 1/2. The component of the 4-spinor
as residual degree of freedom is distributed into multiple occurrences of the irreps where
applicable, by following the irrep projection with the Gram-Schmidt decomposition. This
is described in more detail in [10].
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3. Lattice results

First we show in Fig. 1, our results for the axial, induced pseudoscalar and pseudoscalar
form factors. On the upper right corner we show our result for the ratio of pion-pole
dominance hypothesis. Using the twisted mass fermion discretization scheme, the energy
value of the first excited state extracted from the nucleon two-point function and the three-
point function of the temporal axial vector current are much closer than in [1] and thus the
inclusion of a Nπ state alone is insufficient to restore this relation [11]. To investigate this
problem carefully we turn to using explicitly a two hadron interpolating operator in our
calculations.

Figure 1: Study of the axial (top left) , induced pseudoscalar(bottom left) and pseudo scalar
(bottom right) form factors using three ETMC ensembles directly at the physical point. Preliminary
results for the continuum limit is indicated by the gray band. At the upper left panel we show our
results for the r ratio of pion pole dominance.

We build the matrix of projected correlation functions Cik ∈ {ON , ONπ} and analyze
using the well-known Generalized Eigenvalue method for each irrep Γ of total momentum
P⃗ ; in particular we have for the n-th eigenpair

CP⃗ ,Γ(t, t0) v
(n)(t0) = λ(n)(t, t0)C

P⃗ ,Γ(t, t0) v
(n)(t0) (10)

λ(n)(t, t0) = exp
(
−EP⃗ ,Γ

n (t− t0)
)
+ excited states (11)

where EP⃗ ,Γ
n is the nth energy level for total momentum P⃗ and irrep Γ of LG(P⃗ ).

As an example we show preliminary results of our GEVP study for the case P⃗ = 0 and
G1g irrep in Fig. 2.

The result for eigenvectors and -values from the GEVP depends most crucially on (1)
the input correlation matrix and (2) the choice of fit ranges for the eigenvalues as in Eq.
(11). With the top row and bottom left plots of Fig. 2 we show our variation of the
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Figure 2: Study of the 3 lowest-lying states in the nucleon channel with N and Nπ system at
rest for G1g irrep with leading angular momentum content J = 1/2. We compare the extracted
energy levels for different sizes of the GEVP correlation matrix from 8 × 8 (top left), 4 × 4 (top
right) to 3 × 3, the latter without including the single hadron N interpolator. The bottom right
plot shows the overlap per state with the individual operators used for the case of the 4× 4 GEVP.
The orange horizontal lines mark the non-interacting energy levels of the N0(p⃗N )π+(p⃗π) system,
i.e.

√
m2

N + p⃗2 +
√
m2

π + p⃗2 with p⃗2 = {0, 1, 2, 3}.

basis operator set for the correlation matrix, which enters the GEVP. Within each of these
plots the stability of the extracted energy levels is tested two-fold: first by observing the
convergence behavior of the effective energy in the left part of each plot.

√
sneff(t) =

√
En

eff(t)
2 − P⃗ 2 , En

eff(t) = log (λ(t, t0)/λ(t+ a, t0)) /a (12)

The effective energy is given as
√
sn in the center of mass frame. Secondly, in the right-

hand part we study the dependence of the fitted energy level from a single exponential fit
to λ(t, t0) on the lower end tmin of the fit range. The best-fit stable result we find given our
data is shown as the colored band for each level. In addition as orange diamond symbols
we show the effective mass of form an non-GEVP, single nucleon correlator.

The bottom right plot shows the overlap |ψ|2 ∝ |⟨0 |Ok |n⟩|2 of the state n = 1, 2, 3, 4

(grey title bar) with the individual operators entering the GEVP correlation matrix. From
this plot we can conclude that our preliminary result does not show any significant overlap
between the single nucleon and the two hadron scattering state. We repeat this analy-
sis for the moving frames as well. The resulting stability plots are shown in Fig. 3 for
P⃗ 2/(2π/L)2 = 1 (top left) , 2 ( top right) and 3. The emerging picture is consistent with

6
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Figure 3: GEVP spectrum study for first three moving frames. The meaning of symbols is identical
to that in Fig. 2.

the observations in the rest frame: the overlap of Nπ operator overlap is negligible for the
ground state. The levels n = 2, 3 above the nucleon are close to the allowed non-interacting
nucleon-pion energies.

We summarize our preliminary findings for the spectrum in the nucleon channel in Fig.
4. The irrep G1u of OD

h in the left-most column is listed in addition, as the negative parity
counter part to G1g. We expect the lowest level consistent with an S-wave nucleon-pion
state with zero individual particle momenta, which is borne out by the lattice spectrum.

For all other irreps the lowest state is consistent with the single nucleon state. Moreover,
for the rest frame G1d parity symmetry requires the first scattering state close to the P -wave
Nπ level for one unit of momentum back-to-back, which is consistent with our findings. In
moving frames we have mixing of even and odd partial waves, and thus no such selection
rule.

We note, that with the twisted mass formulation we inherit the parity-flavor symmetry
breaking by lattice artifacts. Thus for the Nπ interpolators we focus on the product from
neutron and charged pion, which by tuning is at physical mass. The mass splitting in the
pion triplet, between π± and π0, had been found insignificant in Ref. [8] TABLE III, but
at the expense of an uncertainty in mπ0 , which is an order of magnitude larger than for
mπ± , due to the required neutral pion loops. We avoid this issue by using N0π+ operator.
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Figure 4: Preliminary results for the spectrum in the nucleon channel for rest frame and first 3
moving frames; based on single hadron 3-quark nucleon and nucleon-pion product interpolator as
basis. The error bands for the energy levels include statistical errors with jackknife resampling.

4. Conclusion, outlook

From our preliminary results in Fig. 2 we conclude that for the nucleon at rest the
ground state is given by the single nucleon interpolator; we do not detect contributions from
Nπ operators by overlap, nor is the convergence to plateau for the ground state accelerated
by including Nπ operators. Our next step is to improve on the quality of the plateaus in the
principal correlator fit and computing the transition matrix element between the nucleon
and the two hadron scattering state.
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