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1. Motivation

The axial form factor of the nucleon 𝐺A(𝑄2) plays a central role in understanding the quasi-
elastic part of GeV-scale neutrino-nucleus cross sections. These cross sections must be known with
few-percent uncertainties [1] to enable a reliable reconstruction of the incident neutrino energy in
the upcoming long-baseline neutrino oscillation experiments DUNE [2] and T2HK [3]. Lattice
QCD determinations of 𝐺A(𝑄2) [4] are crucial, as currently available experimental measurements
of the form factor fall short of the required precision [5].

Here we summarize the Mainz group’s recent calculation of 𝐺A(𝑄2) [6] for momentum
transfers up to 0.7 GeV2 using lattice simulations with dynamical up, down and strange quarks with
an O(𝑎) improved Wilson fermion action. We employ a new analysis method that simultaneously
handles the issues of the excited-state contamination and the description of the form factor’s 𝑄2

dependence.

2. Methodology

The matrix elements of the local isovector axial current 𝐴𝑎
𝜇 (𝑥) = 𝜓̄𝛾𝜇𝛾5

𝜏𝑎

2 𝜓 between single-
nucleon states are parameterized by two form factors: the axial form factor𝐺A(𝑄2), and the induced
pseudoscalar form factor 𝐺P(𝑄2). We focus on calculating the axial form factor, which can be
extracted from the current component orthogonal to the momentum transfer.

The setup for the lattice calculation in this project [6] is very similar to the one used in the case
of the electromagnetic form factors [7]. The nucleon two- and three-point functions are computed
as

𝐶2( ®𝑝, 𝑡) =𝑎3
∑︁
®𝑥
𝑒𝑖 ®𝑝 · ®𝑥Γ𝛽𝛼

〈
Ψ𝛼 (𝑡, ®𝑥)Ψ𝛽 (0)

〉
, (1)

𝐶3( ®𝑞, 𝑡, 𝑡𝑠) = − 𝑖𝑎6
∑︁
®𝑥, ®𝑦

𝑒𝑖 ®𝑞 · ®𝑦Γ𝛽𝛼

®𝑞 × ®𝑠
| ®𝑞 × ®𝑠 |2

〈
Ψ𝛼 (𝑡𝑠, ®𝑥) ®𝑞 × ®𝐴𝑎=3(𝑡, ®𝑦)Ψ𝛽 (0)

〉
,

where 𝑡𝑠 is the source-sink separation in the time direction, Ψ𝛼 (®𝑥, 𝑡) denotes the proton interpolating
operator and Γ = 1

2 (1+𝛾0) (1+ 𝑖𝛾5®𝑠 · ®𝛾) is the projection matrix. We set ®𝑠 = ®𝑒3, aligning the nucleon
spin along the 𝑥3-axis.

2.1 Summation method + 𝑧-expansion

The accessible momentum transfers are discrete, and for a given value of q = 2𝜋 | ®𝑛|/𝐿, we
perform averages of the two-point functions over all spatial momenta ®𝑞 of the same norm q. We
then use the ratio

𝑅( ®𝑞, 𝑡, 𝑡𝑠) ≡
𝐶3( ®𝑞, 𝑡, 𝑡𝑠)
𝐶2(0, 𝑡𝑠)

√︄
𝐶2( | ®𝑞 |, 𝑡𝑠 − 𝑡)𝐶2(0, 𝑡)𝐶2(0, 𝑡𝑠)
𝐶2(0, 𝑡𝑠 − 𝑡)𝐶2( | ®𝑞 |, 𝑡)𝐶2( | ®𝑞 |, 𝑡𝑠)

(2)

to construct a momentum-averaged estimator for 𝐺A(𝑄2),

𝐺eff
A (q; 𝑡, 𝑡𝑠) =

√︄
2𝐸q

𝑚 + 𝐸q

∑︁
| ®𝑞 |=q

𝑅( ®𝑞, 𝑡, 𝑡𝑠)
/( ∑︁

| ®𝑞 |=q
1
)
. (3)
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Figure 1: Illustration of averaging over the minimum source-sink separation 𝑡min
𝑠 in the summation method

for the near-physical pion mass ensemble E250. We perform the 𝑧-expansion fits for each ensemble starting
at different values of 𝑡min

𝑠 . The results for coefficients 𝑎0, 𝑎1 and 𝑎2 are shown here as the blue squares.
The bands represent the smooth-window averages over 𝑡min

𝑠 , and the solid red line shows the weight function
(arbitrarily normalized for visibility), which is applied to all three coefficients.

Here 𝑚 is the nucleon mass and 𝐸q its energy. These effective form factors are then used to construct
the summed insertion

𝑆(q, 𝑡𝑠) ≡ 𝑎

𝑡𝑠−𝑎∑︁
𝑡=𝑎

𝐺eff
A (q; 𝑡, 𝑡𝑠)

𝑡𝑠→∞
= 𝑏0(q) + 𝑡𝑠𝐺A(𝑄2) + . . . (4)

with momentum transfer 𝑄2 = q2 − (𝑚 − 𝐸q)2. The excited states, indicated by the ellipsis, are of
order 𝑒−Δ𝑡𝑠 and 𝑡𝑠𝑒

−Δ𝑡𝑠 , with Δ the energy gap above the single-nucleon state.
To extract the form factor 𝐺A(𝑄2), we parametrize it from the outset via the 𝑧-expansion

𝐺A(𝑄2) =
𝑛max∑︁
𝑛=0

𝑎𝑛𝑧
𝑛 (𝑄2), 𝑧(𝑄2) =

√︁
𝑡cut +𝑄2 − √

𝑡cut√︁
𝑡cut +𝑄2 + √

𝑡cut
, (5)

fitting simultaneously the q and 𝑡𝑠 dependence of 𝑆(q, 𝑡𝑠). Here 𝑡cut = (3𝑀phys
𝜋 )2, and both the

offsets 𝑏0(q) (independent for each q) and the coefficients 𝑎𝑛 are fit parameters. We set 𝑛max = 2 in
our main analysis, and test that setting 𝑛max = 3 gives consistent results. In the future, we will also
consider parametrizing the q dependence of 𝑏0(q).

2.2 Choice of source-sink separation

We perform fits to 𝑆(q, 𝑡𝑠) including all values of 𝑡𝑠 ≥ 𝑡min
𝑠 , requiring that at least two 𝑡𝑠 values

enter the fit (and also requiring 𝑛dof > 0). At small values of 𝑡𝑠, contributions from excited states are
expected to be significant, whereas at large 𝑡𝑠 the signal-to-noise ratio becomes poor. This leaves
us with a relatively small window of starting values 𝑡min

𝑠 that can be used. Rather than choosing a
single 𝑡min

𝑠 , we average the fit results 𝑎𝑛 (𝑡min
𝑠 ) over all values 𝑡min

𝑠 , using a ‘smooth window’ function
𝑓 (𝑡min

𝑠 ),

𝑎𝑛 =
∑︁
𝑡min
𝑠

𝑓 (𝑡min
𝑠 )𝑎𝑛 (𝑡min

𝑠 )
/(∑︁

𝑡min
𝑠

𝑓 (𝑡min
𝑠 )

)
, 𝑓 (𝜏) = tanh

(
𝜏 − 𝑡low

𝑤

Δ𝑡𝑤

)
− tanh

(
𝜏 − 𝑡

up
𝑤

Δ𝑡𝑤

)
, (6)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
1
1
3

Isovector Axial Form Factor of the Nucleon from Lattice QCD Jonna Koponen

ID 𝛽 𝑇/𝑎 𝐿/𝑎 𝑀𝜋/MeV 𝑀𝜋𝐿 𝑀𝑁/GeV 𝑁conf 𝑁meas 𝑡𝑠 [fm] 𝑁𝑡𝑠

H102 3.40 96 32 354 4.96 1.103 2005 32080 0.35..1.47 14
H105 3.40 96 32 280 3.93 1.045 1027 49296 0.35..1.47 14
C101 3.40 96 48 225 4.73 0.980 2000 64000 0.35..1.47 14
N101 3.40 128 48 281 5.91 1.030 1596 51072 0.35..1.47 14
S400 3.46 128 32 350 4.33 1.130 2873 45968 0.31..1.53 9
N451 3.46 128 48 286 5.31 1.045 1011 129408 0.31..1.53 9
D450 3.46 128 64 216 5.35 0.978 500 64000 0.31..1.53 17
N203 3.55 128 48 346 5.41 1.112 1543 24688 0.26..1.41 10
N200 3.55 128 48 281 4.39 1.063 1712 20544 0.26..1.41 10
D200 3.55 128 64 203 4.22 0.966 2000 64000 0.26..1.41 10
E250 3.55 192 96 129 4.04 0.928 400 102400 0.26..1.41 10
N302 3.70 128 48 348 4.22 1.146 2201 35216 0.20..1.40 13
J303 3.70 192 64 260 4.19 1.048 1073 17168 0.20..1.40 13
E300 3.70 192 96 174 4.21 0.962 570 18240 0.20..1.40 13

Table 1: Overview of ensembles used in the study. The values 𝛽 = 3.40, 3.46, 3.55 and 3.70 correspond
to lattice spacings 𝑎 ≈ 0.086, 0.076, 0.064 and 0.050 fm, respectively [12]. Columns 𝑇/𝑎 and 𝐿/𝑎 give
the temporal and spatial size of the lattice, and 𝑀𝜋 and 𝑀𝑁 are the pion and nucleon masses. 𝑁conf is the
number of configurations used for each ensemble, and in column 𝑁meas we list the number of measurements
done at the largest source-sink separation. 𝑁𝑡𝑠 is the number of available source-sink separations in the range
listed in column 𝑡𝑠 . For more details see [6].

as a weight factor. We choose 𝑡low
𝑤 = 0.8 fm, 𝑡up

𝑤 = 1.0 fm and Δ𝑡𝑤 = 0.08 fm. The average
represents very well what one would identify as a plateau in the fit results, as illustrated in Fig. 1.

3. Lattice ensembles

We use a set of fourteen CLS 𝑁 𝑓 = 2 + 1 ensembles [8] that have been generated with non-
perturbatively O(𝑎)-improved Wilson fermions [9, 10] and the tree-level improved Lüscher-Weisz
gauge action [11]. They cover the range of lattice spacings from 0.050 fm to 0.086 fm and pion
masses from about 350 MeV down to 130 MeV. Details of these ensembles, including the number
of configurations, the number of measurements and the number of available source-sink separations
𝑡𝑠, are listed in Table 1. All ensembles used in this study have a fairly large volume, as indicated by
𝑀𝜋𝐿 ≳ 4.

4. Global fit

To obtain the form factor at the physical point, the 𝑎𝑛 are extrapolated to the continuum and
interpolated to the physical pion mass, at which point the form factor may be evaluated at any 𝑞2 in
the chosen expansion interval [0, 0.7 GeV2].

4
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For the extrapolation to the continuum, we include a term linear in 𝑎2 for each of the coefficients.
For the extrapolation in pion mass, we use the following three ansätze:

1. Linear in 𝑀2
𝜋 for all coefficients 𝑎𝑛.

2. Again linear in 𝑀2
𝜋 for coefficients 𝑎1 and 𝑎2, and an extended ansatz containing a chiral

logarithm for the zeroth coefficient:

𝑎0 = 𝑔
(0)
𝑎 + 𝑔

(1)
𝑎 𝑀2

𝜋 + 𝑔
(3)
𝑎 𝑀3

𝜋 − 𝑔
(2)
𝑎 𝑀2

𝜋 ln
𝑀𝜋

𝑀𝑁

,

with 𝑔
(1)
𝑎 = 4𝑑16 − (𝑔 (0)

𝑎 )3/(16𝜋2𝐹2
𝜋 , 𝑔

(2)
𝑎 = 𝑔

(0)
𝑎

(
1 + 2(𝑔 (0)

𝑎 )2
)
/(8𝜋2𝐹2

𝜋), and 𝑔
(3)
𝑎 =

𝑔
(0)
𝑎

(
1 + (𝑔 (0)

𝑎 )2
)
/(8𝜋𝐹2

𝜋𝑀𝑁 ) − 𝑔
(0)
𝑎 Δ𝑐3,𝑐4/(6𝜋𝐹2

𝜋). Here 𝑀𝑁 = 938.92 MeV is the nu-
cleon mass, 𝐹𝜋 = 92.42 MeV is the pion decay constant [13], and Δ𝑐3,𝑐4 = 𝑐3 − 2𝑐4 is
a combination of low-energy constants 𝑐3 and 𝑐4. The free fit parameters for the zeroth
coefficient’s chiral extrapolation are 𝑔

(0)
𝑎 , 𝑑16 and Δ𝑐3,𝑐4 .

3. Same as ansatz 2, but including 𝑀3
𝜋 terms for coefficients 𝑎1 and 𝑎2.

Note that, while the coefficients 𝑎𝑛 do not have common fit parameters, they are correlated within
an ensemble: these correlations are taken into account in the fits.

To check for possible finite-size effects (FSE), we include a term [14] 𝑀2
𝜋√

𝑀𝜋𝐿
e−𝑀𝜋𝐿 for the

zeroth coefficient 𝑎0 in some of the extrapolation fits. We do not observe a strong dependence
on the volume. Finite-size effects can also be inspected directly by comparing our results of the
𝑧-expansion fits on two ensembles, H105 and N101, which differ only by their physical volume. We
find that the coefficients 𝑎𝑛 agree well, confirming that finite-size effects are small at the current
level of precision.

We perform multiple extrapolations using these different fit ansätze with pion mass cuts
𝑀𝜋 < 𝑀cut

𝜋 with 𝑀cut
𝜋 = 300, 285, 265 and 250 MeV, as well as dropping data from the coarsest

lattice spacing, to get a handle on systematic effects.

5. Model average (AIC)

Since the different fit ansätze and cuts can be equally well motivated, we perform a weighted
average [15] over the resulting 𝑎𝑛. The Akaike Information Criterion (AIC) [16] is used to provide
the weight to different analyses and to estimate the systematic error associated with the variations
of the global fit. Different variations of the AIC weights have been used over the years, and we
choose [17] 𝑤AIC = 𝑁e−

1
2 (𝜒2+2𝑛par−𝑛data) , where each fit is characterized by the minimum 𝜒2, the

number of fit parameters 𝑛par and the number of data points 𝑛data. Here 𝑁 normalizes the weights
so that their sum is 1.

The corresponding cumulative distribution functions 𝑃(𝑎𝑛) of the coefficients 𝑎𝑛 and of the
mean square radius ⟨𝑟2

𝐴
⟩ are shown in Fig. 2. The full uncertainties, which are shown by the blue

error bands, are determined by the limits 𝑃(𝑎𝑛) = 0.16 and 𝑃(𝑎𝑛) = 0.84. The AIC procedure is
also used to distinguish the statistical and systematic components of the total uncertainty, following
the prescription proposed in [17].

5
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Figure 2: AIC average and the corresponding cumulative distribution function for all coefficients 𝑎0, 𝑎1, 𝑎2,
and the mean square radius ⟨𝑟2

𝐴
⟩ (in fm2 units).

6. Results

Our results for the coefficients of the 𝑧-expansion (Eq. (5) with 𝑡cut = (3𝑀𝜋0)2) of the nucleon
axial form factor in the continuum and at the physical pion mass are

𝑎0 = 1.225 ± 0.039 (stat) ± 0.025 (syst),

𝑎1 = − 1.274 ± 0.237 (stat) ± 0.070 (syst), (7)

𝑎2 = − 0.379 ± 0.592 (stat) ± 0.179 (syst),

with a correlation matrix

𝑀corr =
©­­«

1.00000 −0.67758 0.61681
−0.67758 1.00000 −0.91219

0.61681 −0.91219 1.00000

ª®®¬ . (8)

This leads to the mean square radius ⟨𝑟2
𝐴
⟩ = (0.370 ± 0.063 (stat) ± 0.016 (syst)) fm2, which

is in good agreement with other lattice QCD determinations – see Fig. 3. The comparison features
only lattice calculations with a full error budget, including a continuum extrapolation: The NME21
result is from [18], and the RQCD20 result is from [19]. Both studies parameterize the 𝑄2

dependence of the form factor using a 𝑧-expansion (RQCD also use a dipole ansatz as an alternative
parameterization, the result of which is not shown in the figure). Other lattice calculations [20–24]
also exist with partial error budgets. For comparison, we show the average of the values obtained
from 𝑧-expansion fits to neutrino scattering and muon capture measurements [25]. Our result also
agrees well with the earlier two-flavour calculation by the Mainz group [26], and with a more recent
analysis [27] by the same group that has been obtained via the conventional two-step process of first
determining the form factor at discrete 𝑄2 values and then parameterizing it using a 𝑧-expansion.

6
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Figure 3: (a): Comparison of lattice determinations of the mean square radius ⟨𝑟2
A⟩, from Refs. [18]

(NME21) and [19] (RQCD20), which have full error budget (chiral and continuum extrapolation). The point
labeled Hill et al. is an average of the values obtained from 𝑧-expansion fits to neutrino scattering and muon
capture [25]. The smaller error bars with solid lines show the statistical errors, whereas the wider error bars
with dashed lines show the total errors (including systematic uncertainties). (b): Comparing our result for
the axial form factor to data from pion electroproduction experiments [5] (normalized by the PDG value for
the axial charge [31]) and to a 𝑧-expansion fit to neutrino-Deuterium scattering data [29]. There is a clear
tension between the lattice QCD result and the 𝑧-expansion extracted from deuterium bubble chamber data,
especially at large 𝑄2. The darker blue error band highlights the 𝑄2 range of our lattice data.

The axial charge 𝑔𝐴 = 𝑎0 is in good agreement with our previous determination [28] based on
forward nucleon matrix elements only. Since that method tends to yield more precise results for a
given data set, we do not view the present determination of 𝑔𝐴 as superseding that of Ref. [28], and
merely perform the comparison as a consistency check.

Finally, we compare our result for the axial form factor to data from pion electroproduction
experiments [5] and to a 𝑧-expansion fit to neutrino-Deuterium scattering data [29] in Fig. 3. Our
result agrees well with other lattice QCD calculations, as can be seen by comparing this figure to
Fig. 3 in the recent review [4]. However, there is a tension with the axial form factor extracted from
experimental deuterium bubble chamber data [29], especially at large 𝑄2. According to the authors
of the Snowmass White Paper on Neutrino Scattering Measurements [30], this discrepancy suggests
that a 30-40% increase would be needed in the nucleon quasielastic cross section for the two results
to match. They also note that recent high-statistics data on nuclear targets cannot directly resolve
such discrepancies due to nuclear modeling uncertainties.

7. Summary and conclusions

In this report, we have given a summary of the Mainz group’s recent publication [6], which
introduced a new method to extract the axial form factor of the nucleon. It combines two well-
known methods into one analysis step: the summation method, which ensures that excited-state
effects are sufficiently suppressed, and the 𝑧-expansion, which provides the parameterization of the
𝑄2 dependence of the form factor. Our main results are the coefficients of the 𝑧-expansion, given

7
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in Eq. (7). Systematic effects are included through AIC weighted average, which also provides the
break-up into statistical and systematic uncertainties and the correlations among the coefficients.

We observe good agreement with other lattice QCD determinations of the axial form factor,
which confirms and strengthens the tension with the shape of the form factor extracted from
deuterium bubble chamber data. Comparing our result for 𝑎0 ≡ 𝐺A(0) to the Particle Data Group
(PDG) value for the axial charge, 𝑔𝐴 = 1.2754(13) [31], which can be viewed as a benchmark, we
find agreement at the 1.1𝜎 level. Also, previously, a good overall agreement was found for the
isovector vector form factors [7] with phenomenological determinations, which are far more precise
than in the axial-vector case. This all adds confidence to the finding that the nucleon axial form
factor falls off less steeply than previously thought.
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