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The rate of mixing between a neutral kaon and an anti-kaon (K° — K°) is given, in part, by a
long-range matrix element, defined with two insertions of the weak Hamiltonian separated by
physical, Minkowski time evolution. For physical quark masses, the kaon mass lies above the two-
and three-pion thresholds and, as a result, this long-range matrix element receives contributions
from intermediate on-shell 27 and 3x states. These contributions cannot easily be captured in
a finite Euclidean spacetime, meaning that such matrix elements are not directly accessible via
lattice QCD. In this talk, we present a strategy for combining quantities that can be extracted in
numerical lattice QCD calculations in order to reproduce the physical, infinite-volume long-range
amplitude for K® — K°. The key novelty relative to published work is that we fully include the
effects of three-particle states that were previously neglected. The strategy is built on existing
formalism for long-range matrix elements with two-particle intermediate states, together with the

relativistic-field-theory finite-volume formalism for extracting three-hadron weak decays.
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1. Introduction

Neutral kaon oscillations provide one of many promising avenues for constraining (or discovering)
new physics beyond the Standard Model. But such constraints (or discoveries) are only possible if
the Standard Model prediction is sufficiently reliable. In this spirit, the RBC/UKQCD collaboration
has made significant progress in providing first-principles lattice-QCD determinations of the mass
splitting, AM, of the two neutral-kaon mass eigenstates (K; — Kg), and the closely related CP
violating parameter €x [1—4]. The mass splitting is determined from a long-range matrix element of
two weak-Hamiltonian densities between a kaon and an anti-kaon.

Motivated by such ongoing calculations, this proceedings and the preprint (to appear) are
dedicated to the formal challenge of relating finite-volume Euclidean spacetime correlation functions
to physical, infinite-volume Minkowksi-signature matrix elements, in particular when three-particle
effects play a role. Such relations are of direct relevance to lattice QCD calculations, as these
necessarily estimate finite-volume Euclidean-signature correlation functions that must be related to
the physical observable.

Once the external kaon states are created, intermediate multi-particle states can lead to
exponentials that grow as a function of the Euclidean time separation between the two currents.
After such growing exponentials are removed, the resulting estimator has poles arising from the
discrete finite-volume spectrum as well as power-like finite-volume artefacts. These are related to
finite-volume effects that arise in other multi-hadron observables, such as 71 — 7w scattering and
K — 2x decays. It is well-known how to treat these finite-volume effects for the determinations
of two-body scattering amplitudes using the methods first introduced by Liischer [5—11] and for
decay and transition amplitudes using the formalism of Lellouch and Liischer and subsequent
extensions [12—-17].

In addition to 2 effects, 37 physics could play an important role in quantifying CP violating
observables from neutral kaon oscillations. This is because for the longer-lived mass eigenstate (K ),
the decay K; — 3 is the dominant mode. At physical quark masses, 37 dynamics arising from
K — 3m decays also play an important role in computing long-range matrix elements from QCD.
Three-pion states induce similar finite-volume effects as those in the two-pion sector, and extensions
to the two-body formalism have been developed to constrain three-body scattering amplitudes
from discrete finite-volume spectra [18-20], with first applications of the formalism published in
refs. [21-24]. Recently, the framework has been extended to extract three-body decay and transition
amplitudes [25].

In these proceedings, we present a new formalism which builds upon these previously derived
relations to compute long-range matrix elements including both 27 and 37 dynamics from finite-
volume Euclidean correlation functions. This work can find immediate applications to ongoing
calculations of K*— K oscillations [ 1-4], to ensure the proper systematic removal of all finite-volume
and Euclidean artefacts.

2. The K° < K physical matrix element from Euclidean correlators

As recently reviewed in refs. [1, 26], K® — K° mixing is parameterized at next-to-leading order
in the weak interaction by the mass splitting AM. This splitting is typically written in terms of the
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Figure 1: Shown is the {7 amplitude, defined in eq. (2). The grey circles represent kernels coupling the
various hadronic legs to one- and two-insertions of the weak Hamiltonian. The black circles represent purely
hadronic two- and three-particle scattering amplitudes, defined diagrammatically in figure 2.

mass matrix M, which couples different mass eigenstates, by the relation AM = 2M 5.
It is well known that the mass splitting can be determined from the principal value contribution
of an infinite-volume Minwkowki correlation function,

AM = — Re[T] (1)
2mK
= Re i / d*xpe€PI(RO, 0; oo Ty {Hw (x1) Hw (0) K, 0; 00| 2)
mpg e=0

where Hw,m(x1) is the weak-Hamiltonian density evaluated at the x; spacetime point, Ty is
the time-ordering operator, the M subscript emphasizes Minkowski time dependence, and the
infinite-volume kaon states have the standard relativistic normalization, i.e., (K%, Py; 00| K, P;; c0) =

2wk p; (21)383(Py — P;), where wg p = /m% +P* and mg is the physical kaon mass. The
e-dependent exponential enforces the ie prescription defining 7.

In what follows, we make use of diagrammatic representations of correlation functions in
finite and infinite volumes. The one introduced above, 7, can be defined diagrammatically using
now-standard techniques introduced in refs. [27-30]. In figure 1 we show i7", where in the Feynman
diagrams we represent the insertion of the weak Hamiltonian multiplied by a factor of i with a wiggly
line. This explains the overall factor of (—1) relating 7 and AM in eq. (1).

In figure 1, the external legs represent physical kaons, which are amputated and placed on shell.
The internal legs represent pion propagators, whose momenta are in general off-shell. The grey
circles represent short-distance kernels, while the black circles are off-shell extensions of the purely
hadronic two- and three-particle scattering amplitudes. The key feature needed in the definition of
every kernel is that they are analytic functions for energies in the vicinity of the kaon mass, i.e. their
singularities are far from the kinematic region of interest.

Applying the same techniques used in previous works in the two- and three-particle sector [25, 27—
30], one can isolate the singularities of the infinite-volume, physical amplitude and write it in terms
purely on-shell quantities that are singularity free in the kinematic region of interest. This is, however,
unnecessary for our immediate goal, which is to find a relationship between AM and correlation
functions that be accessible via lattice QCD.
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Figure 2: Shown are the purely hadronic (a) two- and (b) three-particle scattering amplitudes. The grey
circles represent hadronic kernels.

In a finite volume with Euclidean time signature, as is in numerical lattice QCD calculations,
integrals such as eq. (2) are not directly accessible. Instead, one can constrain the analogous
finite-volume Euclidean correlation function

Cr(t) = 2mg L’ / d*x1 (K°,0; L Te{Hw,e(r,x1)Hw (0)}|K°, 0; L), 3)
L

where 7 is the Euclidean time and as is emphasized by the E subscript. Another important distinction
is that the finite-volume states have been normalized to unity, and the multiplicative factor of 2m g L>
is sufficient for local matrix elements of single-particle states to be exponentially close to their
infinite-volume ones [13]. For non-local matrix elements, like the one we are after here, one must
provide a more careful treatment as discussed below.

Naively, one might hope that the Euclidean time integral of Cy (1) could be related to AM, since
it looks superficially like the analytical continuation of the correct Minkowski-signature Fourier
transform. However, since the physical kaon mass satisfies mg > 3m ., the integral of Cp,(7) is not
convergent due to finite-volume two- and three-pion states.! This is easily seen if one performs a
spectral decomposition of eq. (3),

CL(r) = ) en|e” EmITO(7) + e BT 0(=1) )

where c¢,, is defined in terms of local finite-volume matrix elements of the weak Hamiltonian,
cn = 2m L (K%, 0; L|Hyw (0)[n, 0; L) (n, 0; L|Hw (0)| K, 0; L). ()

One observes that the resulting integral is not convergent because a finite set of intermediate states
would satisfy E,, > mg. Once again, we have normalized the intermediate finite-volume states to
unity regardless of whether they are associated with one-, two-, or three-particle states. The integral
can be rendered finite by subtracting a finite number of divergent terms. We define the subtracted
correlator,

N
Cr(1)=Cr(1) - Z Cn [e_(E"_mk)T®(T) + e(E”_m")TG(—T) , 6)
n=0

'We comment that, in a practical lattice calculation, one could break up the weak Hamiltonian into separate operators
that couple either to two- or three-pion states only. In this way the analysis of growing exponentials and finite-volume
effects could be decoupled in the two sectors.
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Figure 3: Shown in the finite-volume version of iT, defined in figure 1. The building blocks are the same,
except the loops are defined in terms of discrete momenta. The black squares are finite-volume extensions of
amplitudes defined in figure 4.

where the sum on 7 is over the minimum number of states N needed to make the 7 integral finite.

The contributions from the first N terms in the series can be evaluated directly in a finite-
Minkowski spacetime by performing the integral over the time-dependent Minkowski correlator
associated with these finite number of states,

N =~
T = ich / dx?e‘elx?l e_i(E"_mk)x?('D(x?) +ei(E"_mk)x?®(—x?) . (7
n=0 - €=
N
2
=y = ®)
=0 E, —mg

It is worth emphasizing that this integral does not need to evaluated numerically. Instead, all that is
needed to evaluate this contribution is the finite-volume spectra and matrix elements of low-lying
states.

This contribution is necessary to define a finite-volume Minkowski-signature estimator of AM.
We do this by recognizing that the combination of the two previously identified terms gives us a
definition of the estimator, 97, according to

71 =7i<+‘/dTCZ(T). )

It is this quantity that suffers from power-law finite-volume artefacts, as well as finite-volume
dependent poles. Both must be removed to reach a reliable calculation of the infinite-volume
observable.

To remove volume effects, the estimator 77, can be studied diagrammatically to all-orders. As
shown in figure 3, this is defined in the same exact way as 7~ with the loops integrated over continuous
momenta replaced by sums over discrete momenta. One can write each finite-volume loop as an
infinite-volume loop followed by the difference between the two. For two- and three-particle loops,
this difference leads to power-law finite-volume artefacts that can be written in terms of purely
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Figure 4: Shown are the finite-volume version of the (a) two- and (b) three-body scattering amplitudes defined
in figure 2. The kernels are the same as appear in figure 2. The label V inside the loops are emphasizing the
fact that these are defined in a finite volume.

on-shell amplitudes and known finite-volume functions. In general, one finds that
TL=T —ATL, (10)

where below we give an exact form for A77. Combining eqs. (9) and (10), one finds that the desired
amplitude, 7, can be reconstructed from different known quantities using the identity,

T = [7z<+A72]+/dTCZ(T). (11)

2.1 The finite-volume correction

Here we provide a sketch of the derivation of eq. (10) and give the explicit form of ATy, given
in eq. (15) below.? In what follows, we rely on the diagrammatic representation shown in figure 3.
This is defined in terms of kernels (grey circles) and finite-volume amplitudes (black squares). The
off-shell extension of finite-volume hadronic amplitudes are defined in figure 4. We assume that the
volumes are sufficiently large, m L > 1, such that exponentially suppressed effects of the order
O(e~=L) are a subdominant effect in the numerical lattice calculations in which these formulas
would be applied, and can be safely ignored. This means that the masses and kernels used in the
definition of figure 3 are safely approximated to be their infinite-volume counterparts.

We break down the derivation of A7y, in three parts, defined by the three lines of the right-hand
side of figure 3. The first line includes possible short distance contributions where no intermediate
states may go on-shell as well as the single particle pole. The latter can be due to an intermediate
single pion propagator. Because the volumes considered satisfy m L >> 1, this contribution which
we label as 7L(1) is equal to the infinite-volume analogue up to exponentially suppressed corrections,

i7, ) =iT W + O(e7mxLy, (12)

where, for simplicity, we leave the dependence on kinematics implicit.

The next contribution is shown in the second line of figure 3, which includes contributions
associated with possible two-particle intermediate states. These diagrams can have power-law finite
effects associated with these particles going on shell. It is well known that these contributions can

2A detailed derivation will await a future publication.
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be parameterized by a geometric function, typically labelled F, and the infinite-volume two-particle
scattering amplitude, M, [27, 28]. In short, we find that piece of the finite-volume amplitude, ‘7L(2),
can be written in terms of a corresponding infinite-volume term, 7°), as

i@ =i iy F_%ﬂ{z +0(e7 D), (13)
2

+M
where H, is the K — nr amplitude. In addition to not explicitly showing the dependence on the
kinematics, we also leave the volume dependence implicit. It is well known that this amplitude
can be obtained from finite-volume matrix elements [12, 13] and lattice QCD calculations have
been under way [31-34]. This correction was the main focus of Ref. [26, 27] and is the only one
required for quark masses where 2m, < mg < 3m,. For such quark masses, the intermediate
three-particle states shown explicitly in the third line of figure 3 can not go on shell. As a result,
these will have finite-volume effects that are exponentially suppressed and fall under the class of
contributions defined by eq. (12). For physical quark masses, 3m, < mg, and as a result we must
treat these diagrams carefully.
For the evaluation of the diagrams shown in the third line of figure 3, we make use of the
existing three-body finite-volume formalism [18, 19, 25]. In fact, one can just read off the answer
from the second term in eq. (42) if Ref. [18],3

(73 =70 4 iH, iHs + O (e ™=y, (14)

o+ K3
where F3 is a known finite-volume function that depends on the two-body scattering amplitude [18],
Kar,3 is the 37 K matrix that can be constrained from the 37 spectrum and directly related to the
3n — 3 scattering amplitude [18, 19], and Hj is proportional to the K — 37 decay amplitude that
can be obtained from the corresponding finite-volume matrix element [25].

Adding eqs. (12), (13) and (14) and equating them eq. (10), we find an explicit expression for
the correction term,
H; + O(e L), (15)

1
ATL = Hy ———— H, + H3
F-1 2

+ M

Fil+ Kar s
It is worth emphasizing that all of these components can be obtained from the finite-volume 27, 37
spectra and the K — 27, K — 37 weak matrix elements.

Conclusion and Outlook

We have laid out a complete framework to compute the Ks — K; mass splitting from lattice
QCD for physical kaon mass, which includes physical effects from 27 and 37 decay dynamics. Our
formalism relies on a two-step procedure to obtain the infinite-volume K° — K° mixing Minkowski
matrix elements from finite-volume Euclidean lattices. First, we relate compute finite-volume
Euclidean-signature matrix elements from Lattice QCD, and use the result eq. (9) in order to
obtain the finite-volume amplitude 77. Second, We remove the finite-volume effects which are

3The one modification needed for adopting this result is A — iH3, due to the fact that the interpolators in the
aforementioned reference do not include factors of i.
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power-law in the volume L with eq. (10), where the correction A7z, eq. (15), is given in terms of
previously defined on-shell quantities which can be obtained with various finite-volume formalisms
for the 27 and 37 scattering amplitudes as well as the K — 7w and K — 37 decay amplitudes.
This complete procedure, given in eq. (11), allows us to determine the infinite-volume Minkowski
signature amplitude 7-, and in turn determine the mass splitting AM = Re[7 ]/ (2mk).
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