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1. Introduction and motivation

The temporal factorization of fermion determinants is a generic feature of fermionic quantum
field theories on the lattice. The key steps for achieving the factorization are 1) the dimensional
reduction of the fermion determinant, 2) the projection to canonical sectors with fixed fermion
numbers, and 3) the factorization of the canonical determinants in terms of transfer matrices. In
these proceedings we summarize these three steps first for a generic fermionic gauge field theory
and then exemplify the steps by applying them to QCD with Wilson fermions.

The dimensional reduction of the fermion determinant has been known since a long time [1–3]
and has been used in different contexts [4–12] since then. Canonical ensembles and determinants
have found their use in various applications [13, 14]. In some cases they lead to a solution of the
fermion sign problem [15]. For the factorization it is important use the canonical projection of the
fermion determinant as first proposed [16] and applied [17, 18] in the context of supersymmetric
Yang-Mills quantum mechanics. Moreover, the factorization of the fermion determinant has also
been demonstrated for the Hubbard model [19].

The dimensional reduction and temporal factorization of the fermion determinant is most in-
teresting from an algorithmic point of view. First, the dimensional reduction offers the possibility
to reduce the complexity of calculating the fermion determinant. Second, the factorization allows
the construction and application of multi-level integration schemes following [20]. Since the fac-
torization in terms of the transfer matrices presented here is the most atomic one, it may serve as the
basis for more flexible and efficient factorization schemes [21, 22]. The factorization also enables
the construction of improved estimators for generic 𝑛-point correlation functions [19]. Moreover,
the transfer matrices naturally accommodate open boundary conditions in time.

To set the stage we consider a generic fermionic gauge field theory with gauge fields U and
fermion fields 𝜓†, 𝜓. Its grand-canonical partition function at finite chemical potential 𝜇 is

𝑍GC(𝜇) =
∫

DU 𝑒−𝑆𝑏 [U]
∫

D𝜓D𝜓 𝑒−𝜓𝑀 [U;𝜇]𝜓 (1)

=

∫
DU 𝑒−𝑆𝑏 [U] det𝑀 [U; 𝜇] , (2)

where 𝑆𝑏 [U] is the bosonic gauge field action and 𝑀 [U; 𝜇] the fermion matrix. After integrating
out the fermion fields one obtains the fermion determinant det𝑀 [U; 𝜇] as indicated in Eq. (2). In
general, this determinant is very difficult to calculate, due to its highly non-local dependence on the
gauge field. In the Hamiltonian formulation one can formally write the partition function as a trace
of the Hamiltonian Boltzman weight over all the states of the system,

𝑍GC(𝜇) = Tr
[
𝑒−H(𝜇)/𝑇

]
= Tr

∏
𝑡

T𝑡 (𝜇) , (3)

where the last equation indicates that on a space-time lattice the temporal evolution can be written
in terms of grand-canonical transfer matrices T𝑡 defined at fixed (Euclidean) times 𝑡. Finally, one
can use a fugacity expansion to relate the grand-canonical partition function to the canonical one,
𝑍𝐶 (𝑁), for which the fermion number 𝑁 is fixed,

𝑍GC(𝜇) =
∑︁
𝑁

𝑒−𝑁𝜇/𝑇 · 𝑍𝐶 (𝑁) =
∑︁
𝑁

𝑒−𝑁𝜇/𝑇 · Tr
∏
𝑡

T (𝑁 )
𝑡 . (4)
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Here, T (𝑁 )
𝑡 are the corresponding canonical transfer matrices at fixed fermion number 𝑁 . They

can be obtained, at least formally, by restricting T𝑡 to states with fixed 𝑁 . In the following we show
that these relations are not just formal, but can be made explicit.

2. Step 1: Dimensional reduction of the fermion determinant

For generic gauge field theories discretized on a space-time lattice with 𝐿𝑠 × 𝐿𝑡 lattice sites
and a total of 𝐿 fermionic degrees of freedom per time slice, the fermion matrix 𝑀 [U; 𝜇] has the
(temporal) structure

𝑀 [U; 𝜇] =

©­­­­­­­­­­«

𝐵0 𝑒+𝜇𝐶′
0 0 . . . ±𝑒−𝜇𝐶𝐿𝑡−1

𝑒−𝜇𝐶0 𝐵1 𝑒+𝜇𝐶′
1 0

0 𝑒−𝜇𝐶1 𝐵2
. . .

...
...

. . .
. . .

𝐵𝐿𝑡−2 𝑒+𝜇𝐶′
𝐿𝑡−2

±𝑒+𝜇𝐶′
𝐿𝑡−1 0 𝑒−𝜇𝐶𝐿𝑡−2 𝐵𝐿𝑡−1

ª®®®®®®®®®®¬
. (5)

Here, the matrices 𝐵𝑡 describe the spatial fermion hoppings and only depend on the spatial gauge
fields at fixed time 𝑡, while the matrices 𝐶′

𝑡 and 𝐶𝑡 describe the temporal fermion hoppings forward
and backward in time, respectively. They only contain temporal gauge fields. The ± signs in the
upper right and lower left block of the matrix indicate periodic or antiperiodic boundary conditions
for the fermions in the temporal direction.

Given this structure, the determinant of 𝑀 can be reduced by iterative Schur decompositions
yielding

det𝑀 [U; 𝜇] =
𝐿𝑡−1∏
𝑡=0

det 𝐵̃𝑡 · det
(
1 ∓ 𝑒𝜇𝐿𝑡 · T

)
, (6)

where T = T0 · . . . · T𝐿𝑡−1 with T𝑡 = T𝑡 [𝐵𝑡 , 𝐶𝑡 , 𝐶′
𝑡 ], i.e., the matrices T𝑡 only depend on the spatial

blocks associated with the time slice at time 𝑡. The matrices 𝐵̃𝑡 are equal to 𝐵𝑡 up to constant factors
of the fugacity 𝑒±𝜇. Since the prefactor

∏
𝑡 det 𝐵̃𝑡 is already factorized and hence not relevant in

the remaining derivation of the factorization, we neglect it for simplicity and only reintroduce it at
the very end.

The key object from step 1 is the matrix T [U] given as the product of spatial matrices,

T [U] ≡
𝐿𝑡−1∏
𝑡=0

T𝑡 . (7)

The matrices T𝑡 are of size 𝐿 × 𝐿 only, while in contrast 𝑀 [U; 𝜇] is of size (𝐿 · 𝐿𝑡 ) × (𝐿 · 𝐿𝑡 ).

3. Step 2: Projection of the fermion determinant to canonical sectors

The projection of the fermion determinant to canonical sectors starts from the expansion of the
fermion determinant in terms of the fugacity 𝑒−𝜇/𝑇 ,

det𝑀 [U; 𝜇] =
𝐿/2∑︁

𝑁=−𝐿/2
𝑒−𝑁 ·𝜇/𝑇 · det 𝑁𝑀 [U] , (8)
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where det𝑁 𝑀 [U] denote the canonical determinants at fixed fermion number 𝑁 . Up to a constant
multiplicative factor they are simply given by the coefficients in the fugacity expansion of the
characteristic polynomial of the reduced matrix in Eq. (6),

𝐿/2∑︁
𝑁=−𝐿/2

𝑒−𝑁 ·𝜇/𝑇 · det 𝑁𝑀 [U] ∝ det
(
𝑒−𝜇/𝑇 + T [U]

)
, (9)

where for simplicity we now restrict ourselves to antiperiodic temporal boundary conditions for the
fermions. The coefficients can be calculated through the elementary symmetric functions 𝑆𝑘 of
order 𝑘 of the eigenvalues {𝜏𝑖} of T ,

det 𝑁𝑀 [U] ∝ 𝑆𝐿/2+𝑁 (T ) ,

where

𝑆𝑘 (T ) ≡ 𝑆𝑘 ({𝜏𝑖}) =
∑︁

1≤𝑖1<· · ·<𝑖𝑘≤𝐿

𝑘∏
𝑗=1

𝜏𝑖 𝑗 =
∑︁
|𝐽 |=𝑘

det T \𝐽 \𝐽 . (10)

In the last equality we have made use of the fact that the symmetric functions 𝑆𝑘 can be expressed
in terms of the principal minors of order 𝑘 denoted by det T \𝐽\𝐽 . We recall that the principal minors
are obtained by computing the determinant of the matrix T \𝐽\𝐽 from which the columns and rows
labeled by the index set 𝐽 of size 𝑘 are removed.

Summarizing the derivation above we have

det 𝑁𝑀 [U] ∝
∑︁
𝐽

det T \𝐽 \𝐽 [U] ∝ Tr

[∏
𝑡

T (𝑁 )
𝑡

]
. (11)

The last proportionality exposes the connection with the trace over the fermionic states with fixed
fermion number 𝑁 of the product of transfer matrices in Eq. (4), except that here the trace is taken
for a fixed gauge field U.

We note that the fermionic states are labeled by index sets 𝐽 ⊂ {1, . . . , 𝐿}, |𝐽 | = 𝐿/2 + 𝑁 ,
hence the number of states is given by

𝑁states =

(
𝐿

𝐿/2 + 𝑁

)
= 𝑁principal minors , (12)

i.e., at half-filling (𝑁 = 0) the number of states grows exponentially with 𝐿. For relativistic gauge
field theories, half-filling corresponds to the vacuum sector where all states have equal numbers
of fermions and antifermions, hence 𝑁 = 0. At first sight, the exponential growth of states looks
like an obstacle for numerical Monte-Carlo simulations, however, one can treat the index set 𝐽 as a
(discrete) dynamical degree of freedom which can be evaluated stochastically [14, 16–19].

4. Step 3: Temporal factorization of the fermion determinant

Having the canonical fermion determinant at hand, we are now in the position to derive its
temporal factorization. To do so, we use the Cauchy-Binet formula

det(𝐴 · 𝐵) \𝐼\𝐾 =
∑︁
𝐽

det 𝐴 \𝐼\𝐽 · det 𝐵 \𝐽\𝐾 (13)

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
2
)
0
4
2

Transfer matrices and temporal factorization of the Wilson fermion determinant Urs Wenger

to factorize the minor matrix of a product of matrices 𝐴 · 𝐵 into the product of the corresponding
minor matrices of 𝐴 and 𝐵. Applying the Cauchy-Binet formula to the principal minors in Eq. (11)
achieves the factorization. Reintroducing the prefactors det 𝐵̃𝑡 and defining (T𝑡 )𝐼𝐾 = det 𝐵̃𝑡 ·det T𝑡 \𝐼\𝐾
for simplicity we eventually obtain the expression in terms of the transfer matrices,

det T \𝐽\𝐽 = det(T0 · . . . · T𝐿𝑡−1) \𝐽\𝐽 = (T0)𝐽𝐼 · (T1)𝐼𝐾 · . . . · (T𝐿𝑡−1)𝐿𝐽 , (14)

where implicit sums over the index sets {𝐽, 𝐼, 𝐾, . . .} are assumed. Collecting everything we finally
have

det 𝑁𝑀 [U] =
𝐿𝑡−1∏
𝑡=0

det 𝐵̃𝑡 ·
∑︁
{𝐽𝑡 }

𝐿𝑡−1∏
𝑡=0

det T𝑡 \𝐽𝑡\𝐽𝑡+1 , (15)

where |𝐽𝑡 | = 𝐿/2 + 𝑁 and 𝐽𝐿𝑡 ≡ 𝐽0.

5. Application to QCD with Wilson fermions

We can now apply the three steps sketched in the previous sections to QCD with Wilson
fermions. For this purpose we consider the Wilson fermion matrix 𝑀 [U; 𝜇] for a single quark
flavour with chemical potential 𝜇,

𝑀± [U; 𝜇] =

©­­­­­­­­­­«

𝐵0 𝑃+𝐴+
0 ±𝑃−𝐴−

𝐿𝑡−1
𝑃−𝐴−

0 𝐵1 𝑃+𝐴+
1

𝑃−𝐴−
1 𝐵2

. . .

. . .
. . .

𝑃+𝐴+
𝐿𝑡−2

±𝑃+𝐴+
𝐿𝑡−1 𝑃−𝐴−

𝐿𝑡−2 𝐵𝐿𝑡−1

ª®®®®®®®®®®¬
with the Dirac projectors 𝑃± = 1

2 (I ∓ Γ4). Here, the temporal hoppings are

𝐴+
𝑡 = 𝑒

+𝜇 · U𝑡 =
(
𝐴−
𝑡

)−1 with U𝑡 =
{
I4×4 ⊗ 𝑈4(𝑥, 𝑡), 𝑥 ∈ {0, . . . , 𝐿3

𝑠 − 1}
}

collecting the temporal gauge links at fixed time 𝑡, while the spatial fermion hoppings are collected
in the spatial Wilson Dirac operators 𝐵𝑡 containing only the spatial gauge links at time slice 𝑡. All
block matrices appearing in 𝑀 [U; 𝜇] are (4 · 𝑁𝑐 · 𝐿3

𝑠 × 4 · 𝑁𝑐 · 𝐿3
𝑠) matrices. The reduced Wilson

fermion determinant is then given by

det𝑀𝑝,𝑎 (𝜇) ∝
𝐿𝑡−1∏
𝑡=0

det𝑄+
𝑡 · det

[
I ± 𝑒+𝜇𝐿𝑡T

]
, (16)

where T is the product of spatial matrices

T =

𝐿𝑡−1∏
𝑡=0

𝑄+
𝑡 · U𝑡 ·

(
𝑄−
𝑡+1

)−1 ≡
𝐿𝑡−1∏
𝑡=0

T𝑡 (17)

with

𝑄±
𝑡 = 𝐵𝑡𝑃∓ + 𝑃±, 𝐵𝑡 =

(
𝐷𝑡 𝐶𝑡

−𝐶𝑡 𝐷𝑡

)
,

5
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and hence

𝑄+
𝑡 =

(
1 𝐶𝑡

0 𝐷𝑡

)
, (𝑄−

𝑡 )−1 =

(
𝐷−1
𝑡 0

𝐶𝑡 · 𝐷−1
𝑡 1

)
.

We refer to Ref. [11] for further details on the derivation of the dimensional reduction for Wilson
fermions.

The product of the spatial matrices 𝑄±
𝑡 and temporal gauge links U𝑡 can be written in different

ways. The form
T =

∏
𝑡

𝑄+
𝑡 · U𝑡 · (𝑄−

𝑡+1)
−1

emphasises the connection to the usual definition of transfer matrices between time slice at 𝑡 and
𝑡 + 1, while the form

T =
∏
𝑡

U−
𝑡−1 · (𝑄

−
𝑡 )−1 · 𝑄+

𝑡 · U+
𝑡

with U±
𝑡 = U𝑡𝑃∓ + 𝑃± points out the separation of the spatial gauge links within a fixed time slice

𝑡 contained in 𝑄±
𝑡 from those within neighbouring time slices at 𝑡 ± 1. There are also several ways

to express the spatial matrices. The form

T̃𝑡 ≡ (𝑄−
𝑡 )−1 · 𝑄+

𝑡 =

(
1 0
𝐶𝑡 1

) (
𝐷−1
𝑡 0
0 𝐷𝑡

) (
1 𝐶𝑡

0 1

)
exposes the relation det T̃𝑡 = 1 and hence the spectral property 𝜆 ↔ 1/𝜆∗ of the eigenvalues 𝜆 of
T̃𝑡 . In contrast, the form

T̃𝑡 =
(

𝐷−1
𝑡 𝐷−1

𝑡 · 𝐶𝑡
𝐶𝑡 · 𝐷−1

𝑡 𝐷𝑡 + 𝐶𝑡 · 𝐷−1
𝑡 · 𝐶𝑡

)
⇔ S̃𝑡 =

(
𝐶𝑡 𝐷𝑡

𝐷𝑡 −𝐶𝑡

)
expresses the relation between the matrix T̃𝑡 and the three-dimensional scattering matrix S̃𝑡 .

Given the reduced determinant in Eq. (16) and the explicit form of T in Eq. (17) it is now
straighforward to apply step 2 for the case of Wilson fermions and project to the canonical determi-
nants with 𝑁𝑞 quarks,

det𝑀𝑁𝑞
=

∏
𝑡

det𝑄+
𝑡 ·

∑︁
𝐴

det T A𝐴A𝐴 . (18)

Here, the sum is over all index sets 𝐴 ⊂ {1, 2, . . . , 2𝑁max
𝑞 } of size |𝐴| = 𝑁max

𝑞 + 𝑁𝑞 where
𝑁max
𝑞 = 2 · 𝑁𝑐 · 𝐿3

𝑠 for gauge group SU(𝑁𝑐) and 𝑁𝑞 ∈ {−𝑁𝑐 · 𝐿3
𝑠, . . . , +𝑁𝑐 · 𝐿3

𝑠}. Finally, the
temporal factorization of the QCD determinant is achieved by applying step 3 to Eq. (18) yielding

det𝑀𝑁𝑞
=

∏
𝑡

det𝑄+
𝑡 ·

∏
𝑡

𝑀

( (
𝑄−
𝑡

)−1
)
ZZ𝐴𝑡Z𝐵𝑡

𝑀 (𝑄+
𝑡 )Z𝐵𝑡Z𝐶𝑡

𝑀 (U𝑡 )Z𝐶𝑡ZZ𝐴𝑡+1 (19)

where for notational simplicity we have introduced the notation 𝑀 (𝐴) for the minor matrix of a
generic matrix 𝐴.

We end this section by pointing out three interesting properties of the minor matrices appearing
in Eq. (19). First, we note that transforming all temporal gauge links at one fixed time slice 𝑡 with
an element 𝑧𝑘 = 𝑒2𝜋𝑖 ·𝑘/𝑁𝑐 ∈ Z(𝑁𝑐) of the center of the gauge group, i.e.,

U𝑡 → U′
𝑡 = 𝑧𝑘 · U𝑡

6
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we find
det𝑀𝑁𝑞

→ det𝑀 ′
𝑁𝑞

=
∏
𝑡

det𝑄+
𝑡 ·

∑︁
𝐴

det(𝑧𝑘 · T )A𝐴A𝐴 = 𝑧
−𝑁𝑞

𝑘
· det𝑀𝑁𝑞

.

As a consequence, summing over 𝑧𝑘 , 𝑘 = 1, . . . , 𝑁𝑐 yields

det𝑀𝑁𝑞
= 0 for 𝑁𝑞 ≠ 0 mod 𝑁𝑐 ,

i.e., only sectors with integer baryon numbers yield nonvanishing canonical partition functions.
This nontrivial physical relation between the quark and baryon numbers in QCD becomes trivial in
the factorized canonical formulation. Second, we note that with the relations

𝑀 (𝑄−1)
@𝐴Z𝐵

= (−1) 𝑝 (𝐴,𝐵) 𝑀 (𝑄)𝐵𝐴
det𝑄

, det𝑄+
𝑡 = det𝑄−

𝑡 ,

where 𝑀 (𝑄) is the complementary minor matrix of𝑄 and 𝑝(𝐴, 𝐵) the total parity of the index sets
𝐴 and 𝐵, the inversion of 𝑄−

𝑡 can be avoided. Third, we note that U𝑡 is trivial in Dirac space and
has a simple block structure in terms of the collection of temporal gauge links𝑊𝑡 = I4×4 ⊗𝑈4(𝑥, 𝑡)
at fixed spatial site 𝑥. As a consequence, the corresponding minor matrix element 𝑀 (U𝑡 )Z𝐶𝑡ZZ𝐴𝑡+1

in Eq. (19) is nonzero only if 𝑀 (𝑊𝑡 )A𝑐𝑡A𝑎𝑡+1
≠ 0,∀𝑥, where 𝑐𝑡 (𝑥) ∈ 𝐶𝑡 and 𝑎𝑡+1(𝑥) ∈ 𝐴𝑡+1 are the

sub-index sets restricted to 𝑥. Hence, 𝑀 (U𝑡 )Z𝐶𝑡ZZ𝐴𝑡+1 = 0 if |𝑐𝑡 (𝑥) | ≠ |𝑎𝑡+1(𝑥) | at any of the sites 𝑥.
This imposes a considerable restriction on the allowed index sets.

6. Multi-level integration schemes and improved estimators

The factorization provided by Eq. (19) allows for simple multi-level integration schemes, since
the gauge fields on different time slices are no longer coupled through the fermion determinant. For
example, the temporal gauge links U𝑡 at different times 𝑡 are completely decoupled from each other.
Since the spatial matrix U𝑡 is block-diagonal (see remark above), 𝑀 (U𝑡 ) is trivial to calculate.
Assuming Wilson’s plaquette gauge action the only interaction between the temporal gauge links at
fixed 𝑡 is through the temporal plaquettes only.

The spatial gauge fields at fixed time 𝑡 on the other hand interact with each other only through
𝑀

(
(𝑄−

𝑡 )−1) and 𝑀 (𝑄+
𝑡 ). Of course the spatial gauge links at two neighbouring time slices are still

coupled through the gauge action, however, assuming again Wilson’s plaquette gauge action, the
coupling is through the temporal plaquettes only.

The caveat for practical implementations of such multi-level integration schemes lies in the
fact that a priori the factors in Eq. (19) are not necessarily positive. How severe the corresponding
sign problem is and whether it can be ameliorated by multi-level integration schemes remains to be
seen.

For the construction of fermionic observables, such as 𝑛-point correlation functions, we follow
Ref. [19] where the construction is described using the Hubbard model as an example. Source and
sink operators S and S, respectively, inserted at time 𝑡 simply remove or add indices from/to the
index sets at time 𝑡. The operators S and S potentially change the quark number 𝑁𝑞 and hence the
canonical sector, e.g.,

. . . · T (𝑁𝑞 )
𝑡−1 · S𝑁𝑞→𝑁𝑞+3 · T

(𝑁𝑞+3)
𝑡 · . . . · T (𝑁𝑞+3)

𝑡 ′ · S𝑁𝑞+3→𝑁𝑞
· T (𝑁𝑞 )
𝑡 ′+1 · . . . . (20)

7
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Starting from, e.g., the vacuum sector with 𝑁𝑞 = 0 the example in Eq. (20) corresponds to a
baryon-antibaryon correlation function 𝐶B−B(𝑡

′ − 𝑡).
In the factorized formulation, it is natural to construct improved estimators as follows. Barring

potential sign problems one can directly simulate a correlation function 𝐶 (𝑡′ − 𝑡), e.g., as given in
Eq. (20), at large 𝑡′ − 𝑡 and determine𝐶 (𝑡′ +1− 𝑡) relative to𝐶 (𝑡′ − 𝑡) through the expectation value

⟨𝐶 (𝑡′ + 1 − 𝑡)⟩𝐶 (𝑡 ′−𝑡 ) ∼ 𝑒−𝑎𝐸 .

That is, the ground-state energy 𝐸 of the correlator is essentially determined by measuring the
effect of shifting S𝑁𝑞+3→𝑁𝑞

from 𝑡′ to 𝑡′ + 1 and changing T (𝑁𝑞 )
𝑡 ′+1 → T (𝑁𝑞+3)

𝑡 ′+1 on top of the
correlation function 𝐶 (𝑡′ − 𝑡). If this can be implemented in practice, it would open the way to
tackle signal-to-noise problems on top of using multi-level integration schemes.

The construction of improved estimators for correlation functions is closely related to the
expectation value of the transfer matrix ⟨T (𝑁𝑞 )

𝑡 ⟩𝑁𝑞
. In principle, this object contains all the

spectral information of the system in the canonical sector with 𝑁𝑞 quarks, but in practice it is
difficult to calculate since the size of the transfer matrix grows exponentially with the spatial lattice
size 𝐿𝑠. Nevertheless, since the theory is local, one can expect that only a limited number of matrix
elements are necessary to approximate the low-lying spectrum of the transfer matrix.

7. Summary and outlook

In these proceedings we have summarized the generic steps leading to a complete temporal
factorization of the fermion determinant for generic fermionic gauge field theories. The steps involve
1) the dimensional reduction of the fermion determinant, 2) the projection to canonical sectors with
fixed fermion numbers, and 3) the temporal factorization in terms of transfer matrices. Applying
these three steps to QCD with Wilson fermions leads to the most atomic temporal factorization of
the Wilson fermion determinant as given in Eq. (19). The factorization opens the way for more
flexible and potentially more efficient multi-level integration schemes for QCD. The main caveat
for making further progress in this direction lies in the fact that the factors in Eq. (19) are a priori
not necessarily positive and hence may induce a potential sign problem. However, it is worthwhile
to point out that the matrices 𝑄± are strictly positive, and hence also all their principal minors.

The generic canonical projection and subsequent factorization outlined here has already been
applied successfully to a range of fermionic (gauge) field theories in various computational setups.
In [16–18] the principal minors of the canonical projection have been simulated in one-dimensional
supersymmetric SU(𝑁𝑐) Yang-Mills gauge theories. In [19] it was demonstrated in the Hubbard
model that the Hubbard-Stratanovich field can be analytically integrated out from the factorized
determinant such that the model can be simulated with the discrete index sets (representing the
fermion occupation numbers) as the only remaining degrees of freedom. In low dimensions, the
positivity of the fermion weights can then be proven for any arbitrary spin- and mass-imbalanced
system. In [15] the dimensional reduction and determinant factorization has been used to derive the
exact three-dimensional effective Polyakov-loop action for QCD in the heavy-dense limit. Similar
to the Hubbard model, the temporal gauge fields can be integrated out analytically leading to a
system which is free of the fermion sign problem at finite baryon density. In [14] we reported on the
canonical projection of the Wilson fermion determinant for the case of the two-flavour Schwinger
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model. The canonical fermion determinants can then be used, e.g., to calculate meson-scattering
phase shifts from finite-volume effects. A summary of the results of some of these applications is
currently in preparation.

The temporal factorization presented here is loosely related to other approaches to determi-
nant factorizations. For example, it is probably straightforward to derive the factorization based
on winding number expansion techniques [23] starting from the transfer matrices derived here.
Furthermore, fermion bags similar to the ones introduced in [24] can be identified straightforwardly
using the index sets. In our approach, the bags are confined to time slices at fixed 𝑡 (with weights
given by the minor matrices 𝑀 (𝑄±

𝑡 )), however, the bags can be naturally extended in time by
connecting the index sets in time. Following this line of thought a little further immediately leads to
the interpretation of the index sets as fermion occupation numbers and fermion loops as suggested
in [16]. Finally, we note that the factorization of the Wilson fermion determinant presented in Sec. 5
is closely related to the construction of the transfer matrices in [25]. However, we have so far not
established the exact relation between the two constructions.

Acknowledgements: I would like to thank Patrick Bühlmann for useful discussions.
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