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This study explores the utility of a kernel in complex Langevin simulations of quantum real-
time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a
systematic scheme to find kernels that restore correct convergence of complex Langevin. The
schemes combine prior information we know about the system and the correctness of convergence
of complex Langevin to construct a kernel. This allows us to simulate up to 1.5𝛽 on the real-time
Schwinger-Keldysh contour with the 0+1 dimensional anharmonic oscillator using 𝑚 = 1, 𝜆 = 24,
which was previously unattainable using the complex Langevin equation.
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1. Introduction

Understanding the real-time dynamics of strongly correlated quantum systems is of big interest
to many disciplines both in high and low-energy physics. The underlying problem is the sign-
problem, which has been proven to be an NP-hard problem, meaning that we need a system-specific
solution to overcome it.

One of the methods to remedy the problem is the complex Langevin method where the fields
are complexified and then evolved in a fictitious time by a stochastic differential equation. The
method reproduces, for a limited set of parameter ranges, correct results in several systems with
complex actions. One of them is the simulation of QCD at finite chemical potential[6]. The method
has suffered from two major drawbacks, the occurrence of unstable trajectories (runaway solutions)
and convergence to the wrong solution. In strongly correlated system it was shown that the first one
can be avoided by the use of implicit solvers[3]. The latter is still an unsolved problem, and this
study will propose a novel method to correct the convergence based on finding optimal kernels in
the complex Langevin equation based on prior information.

Kernels have been studied to remedy the convergence problem of the complex Langevin in
[9, 10] for simple systems. These studies seem promising for the simple system studied, but
extending the use of kernels to more complicated models was difficult. We propose a strategy to
optimize kernels based on the use of prior knowledge of the model and the correctness criterion
of the complex Langevin. For a full overview of the method, we refer to [4, 5], which explains
the method in detail. In this paper, we will first give an overview of the strategy for the optimized
kernels, then discuss the kernels in relation to the correctness criterion and the Lefschetz thimbles.

2. Kernelled complex Langevin

The general framework for the complex Langevin equation (CLE) is based on Stochastic
quantization, where we construct a stochastic process evolving the fields in a fictitious time 𝜏L. The
stochastic differential equation is dependent on a drift term, 𝑑𝑆/𝑑𝜙 and a noise structure such that
it correctly reproduces the fluctuations of the original theory. In terms of the path-integral, the
expectation values of the observables of the system are given by

⟨𝑂⟩ = 1
𝑍

∫
D𝜙 𝑂 [𝜙]𝑒𝑖𝑆𝑀 [𝜙] , 𝑆𝑀 [𝜙] =

∫
𝑑𝑑𝑥𝐿𝑀 [𝜙], (1)

where we have noted the Minkowski time action as 𝑆𝑀 . The stochastic process, called the complex
Langevin equation, which is deployed for this path integral is given by

𝑑𝜙

𝑑𝜏L
= 𝑖
𝛿𝑆𝑀 [𝜙]
𝛿𝜙(𝑥) + 𝜂(𝑥, 𝜏L) with

⟨𝜂(𝑥, 𝜏L)⟩ = 0, ⟨𝜂(𝑥, 𝜏L)𝜂(𝑥′, 𝜏′L)⟩ = 2𝛿(𝑥 − 𝑥′)𝛿(𝜏L − 𝜏′L).
(2)

Here the fields are complexified 𝜙 → 𝜙𝑅 + 𝑖𝜙𝐼 .
After complexifying the fields, the question of correct convergence needs to be answered. Two

main criteria need to be satisfied in order for the CL to converge to the correct solution; these are
summarised in the correctness criterion [2]. The first one is that the late time complex distribution
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of the field Φ[𝜙] needs to converge to Φ ∝ exp (𝑖𝑆𝑀 ) to reproduce the model, and the second one is
that there should be no boundary terms [11]. We will discuss the criteria in more detail in section 4.

We know from the Fokker-Planck equation of the real Langevin equation that there exists
freedom in the definition of the equation such that it still converges to the original theory, i.e, the
late time distribution is still exp (−𝑆𝐸) (Here we have used the Euclidean formulation of the action
𝑆𝐸 to describe a real action). In the real case, introducing a kernel changes the approach to the
unique stationary distribution, while not changing its form.

On the other hand, when we introduce a complex kernel in the complex Langevin equation, we
obtain a non-neutral modification of the dynamics, meaning that we can also change the stationary
distribution of the dynamics. In this paper, we will restrict the kernel to be field-independent, i.e.,
it is a constant matrix in Langevin time, mixing the field and noise at different space and time
coordinates in the Fokker-Planck equation. The corresponding complex Langevin equation is then
given by

𝜕𝜙(𝑥)
𝜕𝜏L

= 𝐾 (𝑥) 𝜕𝑆[𝜙]
𝜕𝜙(𝑥) + 𝐻 (𝑥)𝜂(𝑥, 𝜏L), ⟨𝜂(𝑥, 𝜏L)𝜂(𝑦, 𝜏′L)⟩ = 2𝛿(𝑥 − 𝑦)𝛿(𝜏L − 𝜏′L) (3)

where we have used the kernel 𝐾 (𝑥) and its factorization 𝐻 𝐻𝑇 = 𝐾 . Note that some studies absorb
the quantity 𝐻 into the noise term 𝜂(𝑥, 𝜏L).

3. Learning optimized kernel

We will, in this section, introduce a strategy on how to construct kernels systematically in
such a way as to improve the convergence of the real-time complex Langevin. We will use prior
knowledge available, such as the symmetries of the system, the Euclidean correlator accessible in
conventional simulations, and the correctness criterion. We set up a cost function, combining each
type of prior information, and minimizing it by updating the kernel’s parameters. In this study
we use a combination of the symmetries and prior known Euclidean correlators, such that our cost
function is 𝐿Prior = 𝐿sym + 𝐿BT.

To minimize the loss by updating the kernel parameters, we need to evaluate the gradient of the
loss function with respect to the kernel parameters. This will involve taking the gradient of the field
with respect to every kernel parameter throughout the whole CL simulation. This is, in principle,
possible using auto-differentiation (AD) and can be implemented for one-degree-of-freedom models
with a small number of kernel parameters. The cost of direct AD methods however grows quickly
with system size and a possible way forward is to implement an adjoint sensitivity SDE method
specifically for the real-time problem, which is beyond the scope of this study.

Instead, we construct a loss function that we can easily calculate an approximate gradient of.
The loss function is inspired by the successful dynamic stabilization approach [7], where one guides
the drift term towards the non-complexified part of the action. The loss function we use is

𝐿𝐷 =

〈����� 1
𝑁

𝑁∑︁
𝑖

𝐷 (𝜙𝑖) · (−𝜙𝑖) − |𝐷 (𝜙𝑖) | |𝜙|
�����
〉

(4)

where 𝐷 = 𝐾𝜕𝑆/𝜕𝜙 which pulls the field degrees towards the origin. By minimizing this function,
we will decrease the boundary terms and attempt to guide the kernelled complex Langevin towards
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achieving correct convergence. We evaluate the gradient of 𝐿𝐷 by treating every configuration as
independent events, and hence do not take the gradient of the whole CL simulation. This is an
approximation to the true gradient, as the field depends on the rest of the simulation. However, we
find that in practice it works well to guiding the kernel parameters in the correct direction.

We now apply the low-cost gradient in an iterative optimization scheme1, where we in every
update step monitor the 𝐿prior loss function to see that we are progressing in the right direction. We
select in the end the kernel with the smallest 𝐿prior.

3.1 Anharmonic oscillator case study

In this section, we will use the strategy laid out above to construct a kernel for the anharmonic
oscillator in 0 + 1𝐷 on the thermal Schwinger-Keldysh contour at short to intermediate real-times.
We extend correct convergence to real-times where previously no appropriate kernel has been found.
The model has been studied by complex Langevin in [3, 8] where it was shown that there is a limit
to the real-time extent before the naive complex Langevin converges to the wrong solution. The
action of the model is given by

𝑆(𝜙) =
∫

𝑑𝑥0

{
1
2

(
𝜕𝜙(𝑥0)
𝜕𝑥0

)2
− 1

2
𝑚2𝜙2(𝑥0) −

𝜆

4!
𝜙4(𝑥0)

}
(5)

where we use 𝜆 = 24 in this paper. The real-time contour deployed is the canonical version first used
for the complex Langevin in [3]. This contour follows the real axis in the forward and backward part
of the contour, i.e., no tilt is applied for regularizing the theory. For the Euclidean part, we follow
the imaginary axis down to −𝑖𝛽, which is set to 𝛽 = 1 in this paper. We discretize the contour with
20 time-points for every 1 in time, such that a contour with a maximum real-time of 1 will have 20
points in the forward part, 20 points in the backward part, and then 20 points along the Euclidean
part, yielding a total of 60 points along the full contour.

The field-independent kernel is parameterized by a 𝜏𝐿 independent complex matrix 𝐾 with
(2𝑁RT +𝑁E)2 entries, multiplying the 2𝑁RT d.o.f. on the forward and backward contour and the 𝑁E
ones on the imaginary time branch. We tune these kernel parameters when running the optimization
scheme to achieve optimal convergence.

The kernel optimization scheme is tested for the anharmonic oscillator on a Schwinger-Keldysh
contour with two different real-time extents. The results can be seen in fig. 1, wherein the left panel
we show 𝑚𝑡max = 1.0 and the right panel show 𝑚𝑡max = 1.5. We see that by optimizing the kernel
based on the low-cost gradient and monitoring based on 𝐿Prior we manage to extend the correct
convergence of CL up to 𝑚𝑡max = 1.5.

There are, however, limitations to the use of the low-cost gradient approximation, as using the
same scheme for a longer real-time extent of 𝑚𝑡max = 2.0 fails to restore the convergence of CL
[5]. One reason for this failure is that for longer real-time extents, minimizing 𝐿𝐷 , i.e., pulling
the drift towards the origin, is minimizing the boundary terms but introducing a new stationary
distribution other than exp(𝑖𝑆𝑀 ). This breaks the correctness criterion. We will closely examine
the relationship between the kernel and correctness criterion, and give more detail on why only
minimizing the boundary terms is not sufficient in the following section.

1In this paper we use the ADAM optimizer
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Figure 1: Two different real-time extents; 𝑚𝑡max = 1.0 (left) and 𝑚𝑡max = 1.5 (right) showing the CLE
simulation for the optimized kernel. We show three observables ⟨𝑥⟩, ⟨𝑥2⟩ and the correlator ⟨𝑥(0)𝑥(𝑡)⟩
plotted against the contour parameter 𝑡𝑝 , which for 𝑚𝑡max = 1.0 is 𝑡𝑝 = 1 at 𝑚𝑡 = 1.0 and then 𝑡𝑝 = 2.0 at
𝑚𝑡 = 0.0 after the backward path of the contour.

4. Thimbles, boundary condition and kernel

In this section, we will be investigating one-degree-of-freedom models, for which, in the
literature, optimal kernels are known. We use the action 𝑆 = 1

2𝜎𝑥
2 + 𝜆

4 𝑥
4, which leads to the

following partition function 𝑍 =
∫
𝑑𝜙𝑒−𝑆 , which was studied in [1, 9, 10]. The model is interesting

since it exhibits similar properties as the real-time anharmonic oscillator; the convergence problem
appears, breaking both the boundary term condition and the equilibrium distribution of the Fokker-
Planck equation for various parameters. In this section, we would like to understand better how
kernel affects the behavior of the complex Langevin, and also how this relates to the Lefschetz
thimbles and the correctness criterion [2].

Let’s first take the simplest example where 𝜎 = 𝑖 and 𝜆 = 0, which was shown in [9] to have the
optimal kernel of 𝐾 = −𝑖. By applying this kernel to CLE it turns the drift into the simple form of
𝐾

𝜕𝑆 [𝑥 ]
𝜕𝑥

= −𝑥 and we end up with a complex noise given by the coefficient 𝐻 =
√
−𝑖 = 𝑒−𝑖 𝜋4 . This

correspond to the complex Langevin equation sampling from a straight line 𝑧(𝑥) = 𝑥𝑒−𝑖 𝜋4 which
happens to be exactly the same as the Lefschetz thimble. We obtain the thimble by solving the
thimble flow equation analytically [12]

𝑑𝑥

𝑑𝜏
=
𝑑𝑆[𝑥]
𝑑𝑥

. (6)

This points to a connection between the flow of the thimbles and the kernel. The connection is,
however, not as trivial for non-linear actions which we will discuss next.

We now take a closer look at two specific sets of parameters. The first one is 𝜎 = 4𝑖 and 𝜆 = 2
where we can find an optimal kernel, and as the second one, we choose 𝜎 = −1 + 4𝑖 with the same
𝜆 = 2, were for correct convergence, we have to go beyond a constant, field-independent kernel.

The first parameter set was found in [9] to require an optimal kernel of 𝐾1 = exp{−𝑖 𝜋3 } to regain
correct convergence. However, if we use the optimization scheme laid out in section 3 and minimize
using the approximate loss function 𝐿𝐷 , we find two minima; 𝐾1 = exp{−𝑖 𝜋3 } and 𝐾2 = exp{−𝑖 2𝜋

3 }.
We have parameterized the kernel by a phase rotation, leaving only one parameter 𝜃 to be tuned,
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Figure 2: Distribution of the complex Langevin simulation and the Lefschetz thimble (red line) with 𝜎 = 4𝑖
and 𝜆 = 2, using different kernels; 𝐾0 = 1 (top left), 𝐾1 = exp[−𝑖𝜋/3] (top right) and 𝐾2 = exp[−𝑖2𝜋/3]
(bottom left). The green points denote the critical points. The color in the distribution heat map corresponds
to the number of samples at the corresponding position (a lighter color refers to a higher value). In the lower
right pane, we show the boundary terms value for the three different kernels.

and the kernel form is 𝐾 = 𝑒𝑖 𝜃 . The second minimum does not give correct convergence, and we
will now see if we can distinguish the correct convergence kernel 𝐾1 from 𝐾2 using the correctness
criterion [2]. In [5], we give an overview of the correctness criterion when using a kernel.

We show the complex Langevin distribution together with the corresponding Lefschetz thimbles
in fig. 2 for the three different kernels; 𝐾0 = 1(top left), 𝐾1(top right) and 𝐾2(bottom left). We see
that the distribution of the identity kernel 𝐾0 is broad and that the peaks of the distribution point in
the direction of the real axis. This is in line with the findings from the previous simple model where
the angle of the noise coefficient, which in this case is along the real axis, will be the dominant
direction of the CLE sampling. We see a more localized distribution for the two other kernels,
which is rotated in the same direction as the thimble. The main difference between the two is that
𝐾1 bends towards the part of the thimble going towards the real axis, while 𝐾2 bends towards the
thimble going towards the imaginary axis.

We then plot the boundary terms[11] for the real part of the ⟨𝑥2⟩ observable in the lower right
plot of fig. 2. See [5] for a derivation of the boundary terms with a kernel. Here we clearly see that
the identity kernel 𝐾0 has boundary terms appearing, while for 𝐾1 and 𝐾2 there are no boundary
terms. This means we have found a case where we have no boundary terms, and CLE still converges
to the wrong solution. The failures of convergence for 𝐾2 are therefore assigned to it violating the
criterion that the equilibrium distribution of the Fokker-Planck equation should be exp{−𝑆}[5].

For the second parameter point𝜎 = −1+4𝑖 and 𝜆 = 2, we have a similar effect when minimizing
for 𝐿𝐷 . In this case, there are more than two minima, but we have selected two interesting minima,
both of which have no boundary terms while not converging correctly. We have selected these
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Figure 3: Distribution of the complex Langevin simulation and the Lefschetz thimbles (red line) with
𝜎 = −1 + 4𝑖 and 𝜆 = 2, using different kernels; 𝐾0 = 1 (top left), 𝐾3 = 𝑒−𝑖

3𝜋
4 (top right) and 𝐾4 = 𝑒𝑖

𝜋
2

(bottom left). In the lower right pane we show the boundary terms for the three different kernels.

because they yield interesting behavior in the distributions compared to the flowed thimbles, which
can be seen in fig. 3. The kernels have the parameters 𝜃3 = −3𝜋

4 and 𝜃4 = 𝜋
2 . The corresponding

angle for these kernels is close to the direction of the thimble at the critical points (green points),
which are given by the solution to 𝑑𝑆/𝑑𝑥 = 0. We see that the distributions of the two kernels are
localized close to the critical points, for 𝐾3, which is the critical point at the origin, and for 𝐾4, the
critical points that are away from the origin.

5. Conclusion

We have proposed a way to systematically optimize kernels based on prior information to restore
the correct convergence of strongly correlated quantum systems on the real-time Schwinger-Keldysh
contour. We have demonstrated the strategy by extending the extent of correct convergence beyond
previous state-of-the-art simulations. Exploration of field-dependent kernels and implementing
adjoint sensitivity methods for gradients of 𝐿prior on real-time complex Langevin are work in
progress.

We have also investigated the connection between the application of a kernelled Langevin
equation and Lefschetz thimbles. This showed that applying a kernel will change the CLE distri-
bution based on the match between the kernel’s angle and the thimble’s angle at the critical points.
We have also shown that there exist cases where it is not enough only to check that there are no
boundary terms to make any statement of the correctness criterion being satisfied; we also need to
check if the Fokker-Planck equilibrium distribution is exp{𝑖𝑆𝑀 }. As the use of the Fokker-Planck
equation in the evaluation of the correctness criterion is prohibitively expensive for system larger
than one-degree of freedom, the use of other prior knowledge is important.
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