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During the start-up regime of the IBR-2M power fluctuations appear, which the Automatic 

Regulator system dampens. Their origin is not completely clear, however it is known that the 

major reactivity sources are from design – respectively the OPO and DPO reflectors: their axial 

fluctuations towards the active zone and their relative phase of intersecting each other facing the 

center of the active zone. A neuromorphic solution is sought to anticipate (5-10 s) such fluctua-

tions. We present encouraging preliminary results obtained with a Non-linear Autoregressive Ex-

ogenous (NARX) neural network, the main features of the fluctuations being anticipatable. 
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 Introduction 
 

        The safety operating regime of nuclear reactors displays both active and passive measures. 
Among the passive measures are negative reactivities with temperature induced by neutron ab-

sorbers such as Gd and Er mixed into the fuel; the convection circulation of the cooling agent. 
In case of malfunction - at CANDU-reactors for instance the moderator can sink the “zero” 

remanent power - rather very small, considering the only 0.7% fissile ratio. Other measures in-

clude: the steel mantle of the reactor, automated depressurisation valves, etc. The active ones are 
automatic control rods, pressurised  Gd liquid injection (CANDU), etc. Protection systems gen-

erally come in triplet form and are redundant. 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

Figure 1: Savitzky-Golay filter usage examples: top, automatic regulator evolution, bottom 
OPO-DPO phase noise. 

 
    For IBR-2M the main security element is its design, the reactor being profoundly sub-critical. 

Criticality is attained with two rotative reflectors which only by simultaneous crossing in front 

of the active zone lead to super-criticality, namely pulses of 200 s (of 1830 MW) at 0.2 s inter-
vals. IBR-2M has an EPS shutdown system, however due to its high sensitivity to reactivity 

fluctuations – by design, in order to produce very short pulses of 1017n/cm2s, the tuning margin 

up to the EPS threshold is very small. For example the fluctuations in a power production reac-

tor are ca. 15 times smaller. 

 

    IBR-2M has a negative feedback to over-heating and an automatic power regulator (AR) us-
ing a control rod. 
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    The protection and control system of the IBR-2M [1] comprises of mobile tungsten blocks in 

the inox matrix of the static reflectors: two compensating blocks, two emergency rods, a system 
of manual regulation and a system of automatic power regulation. The emergency system im-

merses 2 rods with over 80 mm in 100 ms, respectively 210 mm in 200 ms, taking out 0.24% of 

reactivity in 100 ms. 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

Figure 2: Neutron noise during reactor ramp-up (top - in black) together with the pedestal (in 
blue); middle - compensator block 2; bottom the automatic regulator. The pale yellow bands 

represent regions of instability onset. 
 

    The compensation blocks can move both with low and high speed, in steps no longer than 4s - 

the emergency speed being 41 mm/s. In case of emergency the automatic power regulator acts 
with a maximum speed of 16.7 mm/s. The manual system of power regulation acts with 0.79 

mm/s in steps no longer than 7 s.  

 
    At start-up an external 252Cf source is introduced in a channel in the central part of the active 

zone, and the automated regulator (AR) gradually allows the rise in power. When the AR reach-
es its max range, compensator block 2 is pulled back 1 unit (in steps) and the AR moves back to 

mid-range. The process is repeated in steps for ca. 1 h up to nominal power. 
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    During this process power fluctuations appear, which the AR system dampens. Their origin is 

not completely clear, however it is known that the major reactivity sources are from design – 
respectively the OPO (main) and DPO (auxiliary)-reflectors – axial fluctuations towards the ac-

tive zone and their relative phase of intersecting each other facing the center of the active zone. 

Figure 3: The equivalent of a NARX neuromorphic cell. The classifier's output is re-applied 

successively as one of the inputs. 

 
    To be able to follow the parameters of reactor power in time we need to deconvolute the neu-

tron noise from the power average (pedestal, see figure 1, in blue). 

 
    A very robust method is a Savitzky-Golay [3] filter. In this method the current point is given 

by the free term of a fit on 2K+1 bins, to the left and right of the current bin: 
 

∑ (𝐶𝑥𝑖
3 + 𝐴𝑥𝑖

2 + 𝐷𝑥𝑖 + 𝑌 − 𝑦𝑖)2 = 𝑚𝑖𝑛

+𝐾

𝑖=−𝐾

 (1) 

 

We obtain the coefficients by taking the derivatives with respect to them, respectively: 
 

 

∑ (𝐶𝑥𝑖
3 + 𝐴𝑥𝑖

2 + 𝐷𝑥𝑖 + 𝑌 − 𝑦𝑖)𝑥𝑖
𝑞 = 0

+𝐾

𝑖=−𝐾

 (2) 

 

where 𝑞 =0,3.̅̅ ̅̅ ̅ 

 

    Notice that due to the symmetric summation to the left and right of the current bin, the sums 
of odd powers are null, hence: 

 

𝐶𝑆6 + 𝐷𝑆4 = 𝑌3 

𝐴𝑆4 + 𝑌𝑆2 = 𝑌2 

𝐶𝑆2 + 𝐷𝑆2 = 𝑌1 

      𝐴𝑆2 + 𝑌 = 𝑌2 

 

(3) 

 

where 𝑆𝑞 = ∑ 𝑥𝑖
𝑞+𝐾

𝑖=−𝐾  si 𝑌𝑞 = ∑ 𝑦𝑖𝑥𝑖
𝑞+𝐾

𝑖=−𝐾 . 
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    The solution of the system is thus (with  𝜆4 =  𝑆4 𝑆2⁄ ): 

   This solution is very much CPU intensive, therefore for real-time monitoring we need a pro-

cedure that re-uses the previous bin calculations. In this respect, we implemented in C++ the 
following procedure: 

                                              𝑌0
′ = 𝑌0 + (𝑦𝑛𝑒𝑥𝑡 − 𝑦𝑙𝑎𝑠𝑡) 

                                      𝑌1
′ = 𝑌1 − 𝑌0 + (2𝐾 + 1)(𝑦𝑛𝑒𝑥𝑡 − 𝑦𝑙𝑎𝑠𝑡) 

                                      𝑌2
′ = 𝑌2 − 2𝑌1 + 𝑌0 + (2𝐾 + 1)2(𝑦𝑛𝑒𝑥𝑡 − 𝑦𝑙𝑎𝑠𝑡) 

     𝑌3
′ = 𝑌3 − 3𝑌2 + 3𝑌1 − 𝑌0 + (2𝐾 + 1)3(𝑦𝑛𝑒𝑥𝑡 − 𝑦𝑙𝑎𝑠𝑡) 

(5) 

where 𝑌𝑘
′ are the sums for the current bin - expressed function of those for the previous bin. This 

is possible because, for a given 𝑦𝑖𝑖𝑞, the translation means going to 𝑦𝑖(𝑖 − 1)𝑞, respectively 

addition of an update equal to 𝑦𝑖[(𝑖 − 1)𝑞 − 𝑖𝑞] - which is expressed function of all other power 

sums already known for the previous bin.  
 

    In this way, for Savitzky-Golay polynomials of higher orders and extensive 2K+1 ranges, it is 

possible to update fast, real-time pedestal monitoring becoming possible for a number of simul-
taneously monitored quantities. 

2.  Autoregressive neuromorphic software 

            Neuromorphic software is heuristically a learning model based on biological neurons, 

used to estimate a function that depends on a large number of entries, usually without a known 
behavior. 

 

    The program emulates a set of interconnected neurons. Each neuron receives at input the sig-
nal generated by the other neurons, or directly from the network's entries, and generates a trans-

formed signal to the hierarchically superior neurons. These characteristics of neuromorphic 

software allow it to ``learn'' from a set of training data. Neuromorphic software can identify eas-
ily data patterns presented to it during training, which it can signal out. 

 
    From a practical point of view the training stage is an optimisation of the inter-neuron link 

weights until the training data set is classified with minimal error. A robust engine for this pro-

cedure is the Nelder-Mead [4] algorithm. 
 

    Recurrent neural software sports additionally one or more connections between outputs and 

inputs - such that the predicted quantities become themselves part of the input data. The output 
data fed back in are delayed one or more iterations and are kept in a buffer of modest dimension. 

In this context a class of marked interest is that of auto-regressive exogenous software (NARX) 
[5; 6]. 

                                                                     𝐶 =
𝑌3  𝜆4⁄ − 𝑌1

𝑆6  𝜆4⁄ − 𝑆4
 

                                                                     𝐴 =
𝑌2  𝑆2⁄ − 𝑌0

𝜆4 − 𝑆2
 

𝐷 =
𝑌1𝑆6  𝜆4𝑆2⁄ − 𝑌3

𝑆6  𝜆4⁄ − 𝑆4
 

                                                                     𝑌 = 𝑌0 − 𝐴𝑆2 

(4) 
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    This software, aside recurrent data, takes as inputs also quantities that bring new impact (non-
anticipatable in an auto-regressive model). 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

Figure 4: Prediction of the NARX neuro-software for the evolution of coefficient D of the Sa-
vitzky-Golay filter (down - in blue) and the data (in black). Top - for correlation, the pulse pow-

er (black) and its pedestal (in blue). 

 
    The applications of NARX software vary from that of software predictor (in a measurement 

chain), to classifier, signal recognition, controller intelligent design, non-linear filters, etc. 

 
    The software package that we used was the freeware NARXSim [7], from the Facultat d'In-

formatica de Barcelona (Universitat Polytecnica de Catalunya). 
 

3. Ramp-up instability prediction 

        It is of interest to predict the ramp-up instabilities [2] sufficiently in advance for them to be 

monitored, or fed back into the control system of the reactor. Figure 2 (top) displays the neutron 

noise (in black) together with the Savitzky-Golay obtained pedestal (in blue). Two instabilities 
can be observed, at t = 60600 s and at t = 60750 s. These we marked with pale yellow bands and 

then correlated with the evolution of compensator block 2 (middle plot) and of the automatic 

regulator (bottom plot). It can be noticed that the instabilities appear when compensator block 2 
allows raising the power and when the automatic regulator compensates these instabilities. For 

the time that compensator block 2 is stationary the power is driven by actuating the automatic 
regulator. 
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    For the prediction of instabilities we chose as representative quantity the D coefficient of the 

Savitzky-Golay filter, which represents d(pedestal)/dt. We chose a NARX neuromorphic soft-
ware for modelling, because most of the influences on the filter's D coefficient are exogenous 

(compensator block 2, the automatic regulator, the phase between OPO and DPO, cooling agent 

flow (Na), temperature of the cooling agent). 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 
 

Figure 5: Prediction of the NARX neuro-software for the evolution of coefficient D of the Sa-

vitzky-Golay filter (down - in blue) and the data (in black). Top - for correlation, the pulse pow-
er (black) and its pedestal (in blue). It is an improvement to figure 4 by including also the Sa-

vitzky-Golay parameter C of the phase between the OPO and DPO reflectors. 

 
    The parameter to be anticipated is the average slope of pedestal variation in the interval [-2K, 

0] around the current bin (for K = 100 bins, i.e. 10 s). The exogenous parameters that we used 
were: 

- parameters D, A, C of the Savitzky-Golay filter for the power pulses, as well as the 

quadratic mean noise of this filter averaged in the interval [-2K, 0] around the current 
bin 

- parameters Y, D, A of the Savitzky-Golay filter for compensator block 2, as well as 

the quadratic mean noise of this filter averaged in the interval [-2K, 0] around the 
current bin 

- the real time value of the automatic regulator, as well as parameter D of the Savitzky-
Golay filter for this quantity 

- parameter D of the Savitzky-Golay filter for the phase between OPO and DPO, as 

well as the quadratic mean noise of this filter averaged in the interval [-2K, 0] around 
the current bin. 
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    We trained the NARX neural network on 5 ramp-up sets from 2014, 2016 and 2019, keeping 

the ratio of 40% instabilities and 60% normal ramp-up in my training data. We then ran the 
software on a 2019 ramp-up set (different from those used in the training). The result we show 

in figure 4. 

 

4. Conclusion 

       The prediction of the NARX neuro-software for the evolution of the Savitzky-Golay filter 
D parameter is shown in blue, vs the data (in black) - bottom part. In the top part is the pulse 

power (black) and its pedestal (blue) for correlation. Notice that the NARX software can predict 

partially the pedestal evolution in the instability zone – with some latency. To see which param-
eters have more impact, we kept separate the Savitzky-Golay parameter C of OPO-DPO phase. 

Re-training the network with this parameter also, we obtained a much better result, figure 5. 
    This indicates the significant impact that the OPO-DPO phase has among other parameters as 

source of instability. The rest of regions are more chaotical and there are no evident correlations 

that can give any significant prediction power. It is an important result that the NARX neuro-
software has the ability to predict instabilities. Further improvement at this point would be to re-

train the software with a larger data set. 
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