
P
o
S
(
D
L
C
P
2
0
2
2
)
0
2
2

Data-driven approximation of downward solar radiation
flux based on all-sky optical imagery using machine
learning models trained on DASIO dataset

Vasilisa S. Koshkina,𝑎,∗ Mikhail A. Krinitskiy,𝑏,𝑎 Nikita N. Anikin,𝑏 Mikhail A.
Borisov𝑎 and Sergey K. Gulev𝑏
𝑎Moscow Institute of Physics and Technology,
Moscow, Russia

𝑏Shirshov Institute of Oceanology, Russian Academy of Sciences,
Moscow, Russia

E-mail: koshkina.vs@phystech.edu, krinitsky@sail.msk.ru

Cloud cover is the main physical factor limiting the downward shortwave (SW) solar radiation
flux. In modern models of climate and weather forecasts, physical models describing radiative
transfer through clouds may be used. However this option computationally expensive. Instead,
one may use parameterizations which are simplified schemes for approximating environmental
variables. The purpose of our study is to assess the capabilities of machine learning models of
approximating radiation flux based on all-sky optical imagery in order to assess the links between
observed cloud cover properties with the flux. We applied various machine learning (ML) models:
classic ML models and convolutional neural networks (CNN). These models were trained using
the dataset of all-sky optical imagery accompanied by SW radiation flux measurements. The
Dataset of All-Sky Imagery over the Ocean (DASIO) is collected in Indian, Atlantic and Arctic
oceans during several expeditions from 2014 till 2021. When training our CNN, we applied heavy
source data augmentation in order to force the CNN to become invariant to brightness variations
and, thus, approximating the relationship between the visual structure of clouds and SW flux. We
demonstrate that the CNN supersedes existing parameterizations known from literature in terms
of RMSE. Our results allow us to assume that one may acquire downward shortwave radiation
flux directly from all-sky imagery. We also demonstrate that CCNs are capable of estimating
downward SW radiation flux based on clouds’ visible structure.
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1. Introduction

Solar radiation is the main source of energy on Earth [12]. Cloud cover, in turn, is the
main physical factor limiting the downward solar radiation flux. Cloud cover during the day
reduces the influx of solar radiation to the Earth’s surface, and significantly weakens its outgoing
longwave radiation at night due to backscattering [13]. This entails corresponding changes in other
meteorological quantities. The functioning of agriculture, transport, aviation, resorts, alternative
energy enterprises and other sectors of the economy, in one way or another, depends on the amount
and shape of clouds.

There are two options for flux estimation in modern models of climate and weather forecasts.
First is a physics-based modeling of radiation transfer through two-phase medium (clouds) which
includes modeling of multi-scattering taking into account the microphysics of cloud water drops
[11] and aerosols. This option is computationally extremely expensive. Alternatively, one may use
parameterizations which are simplified schemes for approximating environmental variables using
only routinely observed cloud properties, such as Total Cloud Cover (TCC), cloud types and cloud
cover per height layer. The existing parametrizations are empirical and were proposed years and
decades ago based on observations and expert-based assumptions [10, 14]. As a result, they may
not take into account the entire variety of cloud situations occurring in nature, which may lead to a
reduced quality of approximation of downward SW solar radiation flux.

Our goals are to get computationally cheaper estimations of downward solar radiation flux
and to study flux dependence on structural characteristics of clouds. The aim of this study is to
improve the accuracy of existing parameterizations of downward SW radiation flux. In this study,
we assess the capability of machine learning models in the scenario of statistical approximation of
radiation flux from all-sky optical imagery. We solve the problem using various machine learning
(ML) models within the assumption that an all-sky photo contains complete information about the
downward SW radiation.

2. Data

In this section, we present source data for our study. The problem we tackle is to map all-sky
imagery to SW radiation flux using state of the art statistical models (a.k.a. machine learning
models). We use a high-resolution fish-eye cloud-camera «SAIL cloud v.2» [15] to collect all-sky
images, and the radiometer Kipp&Zonen CNR-1 to measure SW flux. In fig. 1, we present the
equipment used to collect the data.

The source data we use in our study is the Dataset of All-sky Imagery over the Ocean (DASIO)
[1] which we collect in marine expeditions starting from 2014. The regions covered in these
missions include Indian and Atlantic oceans, Mediterranean sea and Arctic ocean. In this dataset,
the exhaustive set of cloud types is present. DASIO contains over 1 500 000 images of skydome over
the ocean accompanied with downward SW radiation flux measurements. SW solar flux is averaged
in 10-second intervals, and the all-sky images are registered every 20 seconds. The viewing angle
of the Kipp&Zonen CNR-1 sensors is 180° in both vertical planes. The viewing angle of the
cloud-camera is similar. Photos taken from the fisheye cloud-camera have high enough resolution
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a) b) c)

Figure 1: Equipment we use to collect the data, and an example of all-sky optical imagery over the ocean:
a) radiometer Kipp&Zonen CNR-1; b) cloud-camera «SAIL cloud v.2»; c) all-sky photo with mask.

to resolve fine clouds structural details (1920*1920 px). White balance and brightness of photos
are adjusted automatically for the most comfortable visual experience.

In our study, we employed a subset of DASIO. The size of the training subset was more than
1 000 000, and the size of the test subset was more than 350 000 images. In other words, the ratio
of the volumes of test and training subsets is 1:3.

Fig. 1c also demonstrates a mask we applied to each photo, which filters our visual objects
that are not related to the subject of our study. In addition, to train the models, we used only data
obtained during daylight hours, when the Sun altitude exceeded 5 ◦, and the radiation flux exceeded
5𝑊/𝑚2.

In terms of machine learning, the problem is formulated as follows: objects are all-sky images
of the visible hemisphere of the sky, and target values are the measurements of the downward
shortwave radiation flux, in 𝑊/𝑚2. With this problem statement, it is a regression problem, thus,
we exploited mean square error (MSE) as a loss function for all the ML models in our study.

3. Dataset re-weighting

In target value distribution, one may notice a strong predominance of data points with low SW
flux. In order to improve the approximation skills of our models, we balance the train dataset using
inverse-frequency re-weighting. We make the weights 𝑤𝑖 of individual examples of train dataset to
be inversely proportional to the frequency of target values:

𝑤𝑖 =
𝑑𝑖 · 𝑁𝑝

𝑁𝑝∑
𝑖=1
𝑑𝑖

∼ 𝑑𝑖 ,

where 𝑖 enumerates inter-percentile intervals from 0-th to 99-th; 𝑑𝑖 are the inter-percentile intervals
of empiric target value distribution, and 𝑁𝑝 = 100 is a number of inter-percentile intervals. Here,
the less target frequency, the more inter-percentile interval 𝑑𝑖 , thus, the more are the weights 𝑤𝑖

of the examples. We also propose the scheme for controlling the re-weighting strength using 𝛼
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coefficient:
𝑤′
𝑖 = (𝑤𝑖 − 1) · 𝛼 + 1.

Here, one may notice, that the closer 𝛼 to 1, the stronger re-weighting is applied. In case of 𝛼 = 0,
there is no re-weighting, meaning 𝑤′

𝑖
= 1. Given the form of the weights 𝑤𝑖 and 𝑤′

𝑖
, one may

notice that their expected value is exactly 1.0. Coefficient 𝛼 is a hyperparameter of our re-weighting
scheme which is optimized during hyperparameters optimization stage.

4. Methods

In our study, we used two approaches: the classic approach and the so-called end-to-end
approach with convolutional neural network employed.

Within the classic approach, we examined the following ML models: multilinear regression and
non-parametric ensemble models Random Forests (RF) [2] and Gradient Boosting (GB) [3–5]. In
this approach, we built a real-valued feature space of images consisting of 163 features. In particular,
the following statistics were calculated for each color channel (Red, Green, Blue, Hue, Saturation
and Brightness) of an image: maximum and minimum values; mean and variance; skewness,
kurtosis and percentile set from 5 to 95 with increment of 5, as well as 1 and 99 percentiles. We
also used the feature of sun altitude calculated using geographic position and UTC time of images.

Within the end-to-end approach, we did not computed any of expert-designed features. In
contrast, we applied Convolutional Neural Network (CNN) [6] directly to the images. We also
applied heavy images augmentation meaning strong alterations of average brightness. We also
added spatially correlated gaussian noise. We applied these color-wise augmentations in order to
increase the generalization ability of the CNN, and also in order to train the network to infer a
flux link to the spatial structure of cloudiness instead of average brightness fo an image. Within
this end-to-end neural networks-based approach, we also used the feature of sun altitude. The
structure of the CNN exploited in our study is shown in Fig. 2. As one may see in this figure,
input data are the all-sky RGB imagery resized to the resolution of 512x512 px. In order to speed
up the learning process and to improve the quality of the approximation, we employed Transfer
learning approach [7]: a pre-trained version of the ResNet50 [22] network is used, which was
pre-trained on the ImageNet [23] dataset. The output of the ResNet50 convolutional sub-network
is a 2048-dimensional vector. We concatenate sun altitude to this vector, thus the resulting vector
is 2049-dimensional. We then apply a fully-connected sub-network to it. The structure of this
sub-network is presented in Figure 2. The output of this subnet is real scalar value approximating
the flux. We used Adam algorithm [17] for optimizing our CNN. Training and inference of the
CNN we presented was implemented with Python programming language [21] using Pytorch [20],
OpenCV [19] for Python and other high-level computational libraries for Python.

In both the ensemble models, RF and GB, we exploited in our study, there are hyperparameters
besides the 𝛼 re-weighting coefficient we presented above. Among them are the number of ensemble
members in RF and GB; the maximum depth of the trees of the ensemble, etc. The CNN is also
characterized by a number of hyperparameters: its depth, the width of fully-connected layers in fully-
connected subnet, the hyperparameters of Adam optimization procedure, and also the magnitude
of data augmentation transformations. We employed Optuna framework [18] for hyperparameters
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Figure 2: Architecture of a CNN we exploited in our study. Here, with numbers, we present the shapes of
input data or activation maps.

optimization (HPO). During the HPO stage, the quality of each model initialized with a sampled
hyperparameters set is assessed within K-fold cross-validation (CV) approach with 𝐾 = 5. Due
to strongly correlated examples (all-sky images) that are close in temporal domain, we ensured
the independence of train and validation CV-subsets using Group K-fold cross-validation approach
where groups are hourly subsets of all-sky images. In case of RF and GB models, we assess the
mean RMSE measure as well as its uncertainty within the Group K-fold CV approach.

5. Results and discussion

In this section, we present the current results of our study. To assess the quality of our
models, we used root mean square error (RMSE) measure. Also, the visual representation of the
results is given in the form of value mapping diagrams (Fig. 3), where the correspondence between
approximated and measured flux values is presented in a form of points density. In figure 3, one
may see that the models generally underestimate high fluxes and overestimate low fluxes. It is also
clear that multilinear model approximates the flux worse than other models, which is supported by
the RMSE measures in table 1. The results of CNN are the best among others in terms of formal
RMSE measure as well as approximated-to-measured values mapping diagram.

In our study, we built and trained four ML models to approximate the downward shortwave
radiation flux. We found, that the quality of the CNN, which was built within the end-to-end
approach, is the best compared to other models and also to existing SW radiation parameterizations
known from the literature [10, 14]. In table 1, we present the quality of our models assessed after
the hyperparameters optimization. We also provide RMSE estimates of the parametrizations as
a reference. One may also see that parameterizations error strongly depends on the amount of
cloudiness: the higher Total Cloud Cover (TCC) the higher a parameterization error. We provide
the errors range in brackets for parameterizations known from the literature.

In Fig. 4, we also demonstrate error distributions for each ML models of our study. In the CNN
error distribution (Fig. 4d), one may see that the neural network is prone to slight underestimation
of SW flux. Also, it is clear that erors distribution tails are pretty heavy for both RF and GB models,
and are light for CNN. These features of errors distribution for our models are also in agreement
with the variance of errors that are presented in Tab. 1 in a form of RMSE (taking into account that
the errors are zero-centered, thus RMSE is the square root of variance in this case.)
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a)

b)

c)

d)

Figure 3: Value mapping diagrams for: a) Linear Regression, b) Random Forests (re-weighted), c) Gradient
Boosting (re-weighted), d) CNN. Density colormap is logarithmic for presentation purpose.

The models we present demonstrate some issues. Multilinear regression is a fast model,
however, it has the worst quality. RF and GB demonstrate comparable quality and are relatively fast
at inference time. At the same time, one may note non-smooth errors distribution in diagrams in
Fig. 3(b,c). We suppose that the regular drops of points density may be explained by decision-tree-
based nature of these two ensemble models. One may also notice the outliers in these diagrams that
may be of interest in forthcoming study. In this study, we did not filter the outliers comprehansively,
thus there may be irrelevant imagery in the dataset that represent photographs of birds, glass dome
cleaning operator, etc.
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Table 1: Quality metrics of (1-4) ML models used in this study and (5-6) parameterizations of SW radiation
known from the literature.

No Model Parameterization RMSE,𝑊/𝑚2

1 Linear Regression 84 ± 23.5
2 Gradient Boosting 68.0 ± 23.5
3 Random Forests 68.5 ± 18.7
4 CNN 39.2
5 Dobson–Smith [14] 78.2(38 − 116)
6 LVOAMKI [10] 61.9(26 − 115)

a) b) c) d)

Figure 4: Error distribution figures for: a) Linear Regression, b) Random Forests (re-weighted), c) Gradient
Boosting (re-weighted), d) CNN

6. Conclusions and outlook

In this study, we presented the approach for the approximation of short-wave solar radiation
flux over the Ocean from all-sky optical imagery using state of the art machine learning algorithms
including multilinear regression, Random Forests, Gradient Boosting and convolutional neural
networks. We trained our models using the data of DASIO dataset [1]. The quality of our models
was assessed in terms of RMSE, approximated-vs.-measured flux diagrams and errors histograms.
The results allow us to conclude that one may estimate downward SW radiation fluxes directly from
all-sky imagery taking some well-known uncertainty into account. We also demonstrate that our
CNN trained with strong data augmentations is capable of estimating downward SW radiation flux
based on clouds’ visible structure mostly. At the same time, the CNN is shown to be superior in
terms of flux RMSE compared to other ML models in our study.

Our method of flux estimation may be especially useful in the tasks of low-cost monitoring
of downward fluxes of shortwave solar radiation, as well as in exploratory studies of territories for
their placement. The solution of the presented problem makes it possible to obtain estimates of the
downward SW solar flux based on model atmospheric data containing clouds characteristics, which
may reduce the computational load of the radiation subroutine.

Our results suggest that there are outliers in DASIO dataset that may be filtered in forthcoming
studies. The results also suggest that hyperparameters optimization of our CNN and ensemble
models may help discovering better configurations including proper dataset re-weighting as well as
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more suitable CNN architecture. In further studies, we plan to approximate downward longwave
solar radiation flux using the approach similar to the one presented in this paper. Also, modern
statistical models of Machine Learning class provide opportunity for short-term forecasting of fluxes
which may be useful in forecasting the generation of solar power plants.
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