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Spiking neural networks are increasingly popular for machine learning applications, thanks to
ongoing progress in the hardware implementation of spiking networks in low-energy-consuming
neuromorphic hardware. Still, obtaining a spiking neural network model that solves a classification
task with the same level of accuracy as a artificial neural network remains a challenge. Of especial
relevance is the development of spiking neural network models trained on base of local synaptic
plasticity rules that can be implemented either in digital neuromorphic chips or in memristive
devices. However, existing spiking networks with local learning all have, to our knowledge,
one-layer topology, and no multi-layer ones have been proposed so far. As an initial step towards
resolving this problem, we study the possibility of using a non-trainable layer of spiking neurons
as an encoder layer within a prospective multi-layer spiking neural network, implying that the
prospective subsequent layers could be trained on base of local plasticity. We study a spiking
neural network model with non-trainable synaptic weights preset on base of logistic maps, similarly
to what was proposed recently in the literature for formal neural networks. We show that one layer
of spiking neurons with such weights can transform input vectors preserving the information about
the classes of the input vectors, so that this information can be extracted from the neuron’s output
spiking rates by a subsequent classifier, such as Gradient Boosting. The accuracy obtained on the
Fisher’s Iris classification task is 95%, with the deviation range of 5% over the five cross-validation
folds. This is on par with other existing methods for Fisher’s Iris classification with spiking neural
networks, which shows the prospective possibility of using the proposed layer as an encoder within
a multi-layer network.
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Introduction

Spiking neural networks [1] are biologically-inspired neural network models relevant for ma-
chine learning applications due to ultra-low power consumption of neuromorphic hardware on
which such networks can be deployed [2, 3]. However, a universally robust method for training
spiking neural networks still remains an open question [4].

There exist approaches for obtaining spiking neural networks that solve a classification task on
the base of a trained formal neural network [5], and approaches for training spiking networks with
error backpropagation [6]. These approaches allow creating arbitrarily deep spiking networks [7]
but complicate the implementation of learning directly on the chip, and therefore cannot benefit
from the advantages of hardware implementation at the training stage.

More desirable are training algorithms based on local plasticity rules, in which updating a
synaptic weight only requires information from its adjacent neurons. However, many existing
spiking neural network learning methods based on synaptic plasticity [8–10] employ non-local
plasticity rules, involving e. g. aggregation of updates for weights of different neurons having the
same convolution kernel.

Local learning methods based on Hebbian plasticity rules, such as Spike-Timing-Dependent
plasticity (STDP), proved to be implementable either in digital neurochips such as Loihi [11] or
in analog devices, such as memristive crossbars [12–14]. There, learning can be based on the
rate selectivity of the Hebbian plasticity [15–18], or on the ability of STDP to stabilize the output
spiking rate of a neuron [19], or on the ability of STDP to make a neuron selective to repeating
input spike patterns [19, 20], or on the sensitivity of STDP to correlation in the input spike
sequences [21].However, learning methods based on local plasticity rules have only been shown for
networks of relatively shallow topologies.

Thus, a multi-layer spiking neural network, in which the first layers would transform the input
data and the subsequent layers would train under local plasticity rules to perform the classification,
remains a relevant goal. As an initial step towards that goal, the current paper studies whether a
layer of spiking neurons with non-trainable weights could serve as an encoder.

The layer of spiking neurons have their synaptic weights set on base of logistic functions as
proposed recently in the literature for artificial neural networks [22]. The benchmark input data
for classification is Fisher’s Iris, encoded with mean spiking rates. Then, the Gradient Boosting
classifier is trained to predict the classes by the output spiking rates of the neurons, achieving
accuracy on par with existing spiking neural network-based approaches. This proves that the output
spiking rates of the proposed layer retain the information on the classes of its input data, thus
suggesting the possible usage of such layer as an encoder in a multi-layer network.

1. Input data

For a benchmark classification task we use Fisher’s Iris [23]: 150 samples of three species of
Iris flowers – Iris setosa, Iris virginica, and Iris versicolor – 50 of each species. A sample is a vector
of four rational values describing different measurements of a flower: sepal length, sepal width,
petal length, and petal width. Iris setosa is linearly separable from the other two classes, while the
latter are not linearly separable.
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Before encoding the vectors ®𝑥 of the dataset into the input of the spiking neurons, they are
minmaxscale-normalized, so that each of the four components 𝑥𝑖 , 𝑖 = 1 . . . 4, will range from 0 to
1 in the training set 𝑋:

𝑥𝑖 ←
𝑥𝑖 −min

®𝑢∈𝑋
𝑢𝑖

max
®𝑢∈𝑋

𝑢𝑖 −min
®𝑢∈𝑋

𝑢𝑖
,

and then preprocessed with Gaussian receptive fields, each component of the normalized vector
being replaced by 𝑀 values based on the distance of the component value 𝑥𝑖 to the center of the
corresponding receptive field 𝜇 𝑗 , 𝑗 = 1 . . . 𝑀:

®𝑥 ←
{
𝑒

(
𝑥𝑖−𝜇𝑗

𝜎

)2

, 𝑖 − 1 . . . 4, 𝑗 = 1 . . . 𝑀
}
,

where 𝜇 𝑗 =
𝑗

𝑀−1 , and 𝜎 = 1
2 ·

1
𝑀−2 [24, 25].

The input vectors are thus transformed from their original dimensionality of 4 to a higher
dimensionality of 𝐾 = 4 ·𝑀 , where the number of the receptive fields 𝑀 is an adjustable parameter,
and its optimal value for this task has been found to be 4.

This choice of preprocessing is motivated by our prior work [19], where minmaxscale nor-
malization and Gaussian receptive fields proved to be efficient for a spiking neural network on
the Fisher’s Iris classification task. Whether the proposed layer can work as an encoder without
Gaussian receptive fields is a direction of further work.

2. Model

2.1 Spiking neuron layer setup

The proposed layer consists of 𝑁 spiking neurons, the optimal value found for 𝑁 being 33.
Each of the 𝐾 = 4 · 𝑀 = 16 input vector components is assigned a Poisson generator, and during
presenting an input vector ®𝑥, the 𝑖-th generator emits spikes with the mean rate 𝑟 · 𝑥𝑖 , where
𝑟 = 25 642 Hz, for 𝑇 = 5 s.

All generators are connected to all neurons via synapses with fixed weights. The efficacy of
a synapse connecting 𝑖-th input generator to 𝑗-th neuron the strength of which is characterized by
synaptic weights fixed according to the following rule, borrowed from the literature on artificial
neural networks [22]:

𝑤𝑖 1 = 𝐴 · sin
(
𝑖 · 𝜋
𝐾 · 𝐵

)
, 𝑤𝑖 𝑗+1 = 1 − 𝑅 · 𝑤2

𝑖 𝑗 .

Here, 𝐴 = 0.3 and 𝐵 = 5.9 as in the original paper [22], and the optimal value of 𝑟 has been found
at 1.68.

The output of the proposed layer is an 𝑁-dimensional vector of spike counts of each of the
neurons during the time 𝑇 of presenting an input vector.

3



P
o
S
(
D
L
C
P
2
0
2
2
)
0
1
0

Spiking neural network with fixed synaptic weights based on logistic maps Dmitriy E. Kunitsyn

2.2 Neuron model

The dynamics of a spiking neuron 𝑗 in the proposed layer is governed by the Leaky Integrate-
and-Fire model [26], in which the state of a neuron is described by its membrane potential 𝑉 𝑗 (𝑡):

𝐶m
𝑑𝑉 𝑗

𝑑𝑡
=
𝑉rest −𝑉 𝑗 (𝑡)

𝜏m
+ 𝐼 𝑗syn(𝑡),

where 𝐶m = 262.55 pF, 𝑉rest = −70 mV, 𝜏m = 5 ms. As soon as 𝑉 (𝑡) ⩾ 𝑉th = −66.98 mV, the
neuron fires a spike, after which 𝑉 (𝑡) is instantaneously reset to 𝑉rest and is clamped to it during the
refractory period 𝜏ref = 2 ms.

𝐼
𝑗
syn is the incoming current from the synapses, to which an input spike emitted by 𝑖-th input

generator at time 𝑡𝑖sp adds an exponential pulse:

𝐼
𝑗
syn =

∑︁
𝑖

𝑤𝑖 𝑗

∑︁
𝑡𝑖sp

𝑞syn

𝜏syn
𝑒
−

𝑡−𝑡𝑖sp
𝜏syn Θ(𝑡 − 𝑡𝑖sp),

where 𝑞syn = 5 fC, 𝜏syn = 5 ms, Θ(𝑡) is the Heaviside step function, and 𝑤𝑖 𝑗 is the weight of the
synapse connecting 𝑖-th input generator to the current neuron.

This neuron model has been chosen over more complex and biologically plausible models,
such as Hodgkin-Huxley [27] or FitzHugh-Nagumo [28], following our prior work [29] on training
spiking neural networks to solve classification tasks. The constants have been set in accordance
with the latter, except the membrane capacity 𝐶m and the threshold 𝑉th which have been adjusted
for the current classification task.

3. Experiments

In order to assess the feasibility of the proposed spiking layer as an encoder, the Gradient
Boosting classifier (from the scikit-learn library [30], with the number of estimators being 1000, the
learning rate of 0.01, and the maximum depth of 15) is used in this work as a temporary, test-bench
replacement for the prospective subsequent decoder layers. The performance of the encoder layer is
therefore characterized by the accuracy with which Gradient Boosting is able to decode the classes
of Fisher’s Iris, receiving as its input the vectors of spike counts from the encoder layer.

Classification performance is assessed using 5-fold cross-validation: the 150 vectors of the
dataset are split into 5 non-overlapping subsets, one subset containing 10 vectors from each class.
In different folds, a different subset is considered the testing set, and the remaining subsets form the
training set. For each fold, the classification performance assessment – calculating the normalization
coefficients for the training set, training the Gradient Boosting on the outputs of the spiking layer
in response to the training set, and testing the accuracy of Gradient Boosting on the spiking layer
outputs in response to the testing set – are performed independently.

F1-macro is used as the metric for classification accuracy. The optimal values of the model
parameters mentioned in the preceding sections as adjustable have been found using hyperopt [31]
so that to maximize the F1-macro score on the training set averaged over all folds.
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4. Results

The classification performance of the proposed approach, measured by the F1-macro score on
the testing set averaged over the testing sets of all folds, is presented in Table 1. For comparison,
the accuracy of an artificial neural network is cited, and a few existing classification methods
based on spiking neural networks. Though the performance of the proposed spiking layer is
inferior to an artificial neural network [32], it is on par with a spiking neural network trained by
error backpropagation [33], and with a spiking neural network [19] trained by the local learning
mechanism of Spike-Timing-Dependent Plasticity.

Table 1: The F1-macro of Fisher’s Iris classification by the proposed spiking layer with Gradient Boosting
decoding (mean and deviation range over 5 cross-validation folds) and by several other existing approaches

.

Classification approach F1-macro, %
Proposed approach 95 ± 5

Spiking neural network trained by a local learning rule [19] 97 ± 3
Spiking neural network trained by backpropagation [33] 96

4-layer artificial neural network [32] 100

Conclusion

A layer of spiking neurons with synaptic weights fixed based on logistic functions can transform
real-valued vectors of Fisher’s Iris so that information about their classes is preserved in the neurons’
output spiking rates, and can be extracted using Gradient Boosting. The classification performance
thus obtained is on par with other spiking neural network learning methods.

This result constitutes evidence that spiking neurons with non-trainable weights can be used to
transform input vectors not impeding, and hopefully facilitating, their further classification. A layer
of such neurons could prospectively be employed as an encoder within a multi-layer network. In
the future work, we are planning to assess the necessity of Gaussian receptive fields preprocessing,
and the possibility of employing a trainable spiking layer as the decoder.
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