PoS - Proceedings of Science
Volume 429 - The 6th International Workshop on Deep Learning in Computational Physics (DLCP2022) - Track1. Machine Learning in Particle Astrophysics and High Energy Physics
Energy reconstruction in analysis of Cherenkov telescopes images in TAIGA experiment using deep learning methods
E. Gres* and A. Kryukov
Full text: pdf
Pre-published on: November 14, 2022
Published on: December 06, 2022
Abstract
Imaging Atmospheric Cherenkov Telescopes (IACT) of TAIGA astrophysical complex allow to observe high energy gamma radiation helping to study many astrophysical objects and processes. TAIGA-IACT enables us to select gamma quanta from the total cosmic radiation flux and recover their primary parameters, such as energy and direction of arrival. The traditional method of processing the resulting images is an image parameterization - so-called the Hillas parameters method. At the present time
Machine Learning methods, in particular Deep Learning methods have become actively used for IACT image processing. This paper presents the analysis of simulated Monte Carlo images by several Deep Learning methods for a single telescope (mono-mode) and multiple IACT telescopes (stereo-mode). The estimation of the quality of energy reconstruction was carried out and their energy spectra were analyzed using several types of neural networks. Using the developed methods the obtained results were also compared with the results obtained by traditional methods based on the Hillas parameters.
DOI: https://doi.org/10.22323/1.429.0002
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.