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The GRAPES-3 experiment located in Ooty consists of a dense array of 400 plastic scintillator
detectors spread over an area of 25,000 𝑚2 and a large area (560 𝑚2) tracking muon telescope.
Everyday, the array records about 3 million showers in the energy range of 1 TeV – 10 PeV induced
by the interaction of primary cosmic rays in the atmosphere. These showers are reconstructed
in order to find several shower parameters such as shower core, size, and age. High-energy
showers landing far away from the array often trigger the array and are found to have their
reconstructed cores within the array even though their true cores lie outside, due to reconstruction
of partial information. These showers contaminate and lead to an inaccurate measurement of
energy spectrum and composition. Such showers are removed by applying quality cuts on various
shower parameters, manually as well as with machine learning approach. This work describes
the improvements achieved in removal of such contaminated showers with the help of machine
learning.
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1. Introduction

The long standing mystery of the sources, acceleration and propagation mechanism of cosmic
rays (CRs) can be probed by various methods, like the study of energy spectrum and composition
or the energy dependence of anisotropy in CR flux. These require a better precision in energy
measurement of the showers. However, due to several factors, often the reconstructed energy
is improper as studied using simulated data and can hamper the precise measurement of energy
spectrum. Figure 1 shows the reconstructed energy spectrum deviating from the input energy
spectrum generated from simulation after passing the simulated CRs through the GRAPES-3
detector response. This is caused due to the presence of high energy showers landing hundreds
of metres away from the array which also trigger the array, and such showers often have their
reconstructed cores inside the array due to mis-reconstruction. This work demonstrates methods to
remove such contaminated showers by using simple cut based and machine learning strategies, and
the subsequent improvements in energy spectrum measurements achieved by using these methods.
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Figure 1: Deviation observed in the reconstructed energy spectrum from simulation due to the presence of
contaminated showers

2. The GRAPES-3 experiment

The GRAPES-3 (Gamma Ray Astronomy at PeV EnergieS Phase-3) experiment is located at
Ooty (11.4◦𝑁 , 76.7◦𝐸 , 2200 m a.s.l.), India. The extensive air shower (EAS) array consists of 400
plastic scintillator detectors. Each of these detectors records particle densities and relative arrival
times of particles in an EAS [1]. The scintillator array covers an area of 25000 𝑚2. GRAPES-
3 uses two level trigger, level-0 trigger is a simple three fold coincidence of three consecutive
line of detectors in 100 ns time window and level-1 trigger requires at least 10 detectors hit in
1 µs time window. The scintillator detectors are arranged in hexagonal geometry, with an inter-
detector separation of 8 m. GRAPES-3 also has a 560 𝑚2 tracking muon detector consists of 3712
proportional counters (PRCs) [2]. A schematic of GRAPES-3 with the fiducial area (∼14560 𝑚2)
is shown in Figure 2.
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Figure 2: Schematic of GRAPES-3 air shower array, the area enclosed by the black dashed line marks the
fiducial area

3. Simulation

The Monte Carlo simulation of EAS is carried out using CORSIKA (version 7.69) package.
5 × 108 EAS with proton primaries and spectral index -2.5, having energies within 1 TeV – 10 PeV
were simulated using the hadronic interaction generators SIBYLL and FLUKA. The showers are
thrown within a circular area of radius ’r’ such that the trigger fraction is less than 1% outside this
circle. The value of this radius ’r’ is energy dependent. The typical value ranges within 100-300 m
for showers with energies within 100 TeV, 300-500 m for showers having energies of a few hundred
TeV, and within 500-800 m for showers with energies above a PeV. The simulated showers are
then passed through the detector response of GRAPES-3 array calculated using GEANT4, followed
by shower reconstruction similar to data in order to obtain the shower parameters. The particle
densities recorded in the detectors are fitted by the well known Nishimura-Kamata-Greisen (NKG)
function to obtain the shower parameters as described in [3], namely, the shower size (𝑁𝑒), age (s)
and the shower core (𝑋𝑐, 𝑌𝑐), as shown in Figure 3.

𝜌𝑖 =
𝑁𝑒

2𝜋𝑟2
𝑚

Γ(4.5 − 𝑠)
Γ(𝑠)Γ(4.5 − 2𝑠)

(
𝑟𝑖

𝑟𝑚

) (
1 + 𝑟𝑖

𝑟𝑚

)𝑠−4.5
(1)

where 𝜌𝑖 is the expected particle density at 𝑖𝑡ℎ detector, 𝑟𝑖 is the distance of 𝑖𝑡ℎ detector from shower
core. 𝑟𝑚 is the Moliere radius which is 103 m at Ooty.

The NKG fit is performed by negative log-likelihood minimisation. For an expected density
of 𝜌𝑖 , the probability 𝑝𝑖 of detecting 𝑛𝑖 particles in the 𝑖𝑡ℎ detector can be expressed by a Poisson
distribution,

𝑝𝑖 =
(𝜌𝑖𝐴𝑖𝑐𝑜𝑠𝜃)𝑛𝑖

𝑛𝑖!
𝑒−𝜌𝑖𝐴𝑖𝑐𝑜𝑠𝜃 (2)

where 𝐴𝑖 is the detector area which is 1𝑚2. Thus, the likelihood (𝐿) for all the detectors is calculated
as,

𝐿 =
∏
𝑖

𝑝𝑖 (3)
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Figure 3: The shower profile (left) and its lateral distribution fitted by NKG function (right) of a shower
recorded by GRAPES-3. The core is around the region where the highest particle densities are recorded.

Calculation of products is computationally intensive. Hence, the product is converted to a summa-
tion by taking its natural logarithm.

𝑙𝑛(𝐿) =
∑︁
𝑖

(𝑛𝑖 × 𝑙𝑛(𝜌𝑖𝑐𝑜𝑠𝜃) − 𝜌𝑖𝑐𝑜𝑠𝜃 − 𝑙𝑛(𝑛𝑖!)) (4)

The negative log likelihood, −𝑙𝑛(𝐿), is minimised in order to fit and obtain the shower parameters
as described in [4].

4. Analysis

After reconstructing the simulated showers, the following shower selection criteria are applied:

• Showers with successful NKG fit

• Zenith angle within 25◦

• Showers with reconstructed cores within the fiducial area.

Several showers having their true cores outside are observed to have their reconstructed cores
inside. Such showers are seen to have a lower shower size due to partial information of the shower
available with the array as shown in Figure 4. The contamination is seen to increase with increase
in the true energy of the shower as shown in Figure 5. This is due to increase in the lateral spread
of air showers with energy.

The energy reconstruction of showers is dependent on the shower size and zenith, hence these
contaminated showers are viewed as low energy showers by the array and leads to contamination in
lower shower size bins. The observable parameter for data is shower size, hence we select variables
from logarithmic shower size bins of bin width 100.2. Data quality cuts are devised on these variables
to remove such contaminated showers. For the rest of this document, the well-reconstructed showers
having both their true and reconstructed cores within the fiducial area will be referred to as "signal"
and the mis-reconstructed showers described above are referred as "background". The variables
selected are as follows:
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Figure 4: Showers with true cores outside but mis-reconstructed cores inside having energies within 100
TeV ≤ 𝐸 < 158 TeV (left), and the shower size distributions for showers with the same energy are shown for
well and mis-reconstructed showers (right). The mis-reconstructed showers have lower shower size.
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Figure 5: Contamination increases with increase in true energy

• PSumRatio: It is defined as the ratio between the total particle density collected outside the
fiducial area and the total particle density collected within the fiducial area. This ratio is
higher when the true cores lie outside the array

• LnNKGP: The mis-reconstructed showers have a poor NKG reconstruction. The best value
of the log-likelihood function obtained from NKG fit as described in equation 4, denoted by
LnNKGP, is shown in Figure 6.

• Age: Age is mostly very high in the case of improper core reconstruction as shown in Figure
6 as the NKG curves get flatter.

• Age error: Error in age parameter.

• LnCErr: Error in constant parameter of NKG fit.

Manual cuts are applied chronologically on the above variables. Cuts are chosen at the value where
the signal significance, given by 𝑆/

√
𝑆 + 𝐵, attains its maximum. Here, S and B are signal and
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Figure 6: LnNKGP (left) and Age (right) distributions for shower size 4.6 ≤ 𝑙𝑜𝑔10 [𝑁𝑒] < 4.8, both the
variables show a clear separation for signal and background events. The degree of separation is lesser in
lower shower size bins and increases with increase in shower size.
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Figure 7: The performance of different ML methods to decide the ML method to be used.

background events respectively. Further conditions are also applied in selecting these cut values as
described in [5].

Handling multiple variables and determining quality cuts on each of them for every shower
size bin is tedious. Hence we use machine learning (ML) in order to device cuts. The simulated
data set is divided into two equal parts for training and testing and using the default parameters,
the various ML methods were tested as shown in Figure 7 using the TMVA package of ROOT [6].
Boosted decision tree with gradient boost is seen to have the highest area under ROC, and was
used for further analysis. The hyperparameters and input variables were optimized to ensure that
the integral of receiver-operator-characteristic curves (ROC) for train dataset is close to 1. In order
to avoid possible overtraining, we ensure that the Kolmogorov-Smirnov (KS) probability between
train and test distributions of the BDT output variable is above 0.05. Additionally, the area under
ROC of the two statistically independent test and train samples were observed to be consistent with
each other as shown in Figure 8. The BDT output variable also shows a clear separation and cuts
were applied on the BDT output variable in order to remove contaminated showers.
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Figure 8: ROC (left) and KS test (right) results for 4.0 ≤ 𝑙𝑜𝑔10 [𝑁𝑒] < 4.2. The BDT output variable is
seen to show a clear separation for "signal" and "background".
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Figure 9: Reduction in contamination and the corresponding signal loss as a function of 𝑙𝑜𝑔10 [𝑁𝑒]

5. Results and discussions

The resulting contamination and signal loss after applying manual cuts and ML as a function
of shower size have been shown in Figure 9. It can be seen that ML achieves a better reduction in
contamination than manual cut results with a comparable signal loss. A maximum contamination
of 18% was brought down to 8% using manual cuts and within 5% by the use of ML without any
significant increase in signal loss. This also improves energy spectrum measurements as shown in
Figure 10. The deviation from expected spectrum is further reduced by the use of ML.

Thus, ML is an effective tool to remove contaminated showers and can help in improving
energy dependent studies performed by GRAPES-3.
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Figure 10: The reduction in bias present in energy spectrum measurements due to contaminated showers.
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