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Linear dispersions in two-dimensional materials: a
crystal with symmetry pbma1’ as an example
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Symmetry determines forms of band structures in the vicinity of special points in the reciprocal
space of one-, two- and three-dimensional materials. Tight binding model on a crystal with
four sites per primitive cell that belongs to gray layer single group pbma (45.2.315 or pbma1’
in the magnetic layer groups notation) is calculated. Fortune teller states (FT) are obtained at
the Brillouin zone (BZ) corners, as predicted by group theory for non-magnetic materials with
negligible spin-orbit coupling. We show further that besides these FT states, another interesting
band degeneracy arises as a consequence of symmetry.
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1. Introduction

Symmetry is widely applied concept in solid-state physics. Predictions of crystal field split-
ting of electron energy levels in three-dimensional (3D) crystals [1], determination of phonon-
displacement patterns in graphene [2, 3] and spin ordering in nano-tubes [4], are just a few among
many examples. Group theoretical results are derived from irreducible (co)representations of little
groups of the wave vector and the whole space groups. Those are tabulated and available for (3D)
space groups [5, 6]. For layer groups, which are symmetries of two-dimensional (2D) materi-
als, [7] tabulates little groups characters, while [8] gives characters of the (whole) graphene layer
group. Recently, the representations of all layer groups, both single- and double-, with and without
time-reversal symmetry (TRS), were also published [9].

Not only band degeneracies, but also dispersions near band contacts, are determined by sym-
metry. Ref. [10] gives analysis of band dispersions dictated by all symmorphic little groups in 3D.
A few decades later, sufficient conditions for existence of Weyl fermions near high-symmetry points
(HSPs) in Brillouin zone (BZ) of (3D) space groups were derived [11]. Recently, a full classification
of linear dispersions near HSPs in layers has been reported [12]. Fully linear Hamiltonians are
mutually distinguished not only by the dimensionality, but also by the functional dependence of
energy on the wave vector near band contacts. Fortune teller dispersion (FT), theoretically predicted
earlier [13], is seen in surface layers of silicone by angular resolved photo-emission spectroscopy
(ARPES) [14].

While group theory gives band contacts and dispersions in their vicinity, it does not predict the
position of the Fermi level. Also, symmetry alone does not guarantee that no other bands cross the
Fermi level, once it is conveniently placed (i.e. it does not guarantee clean Fermi surface). Here
we report the realization of FT states from a tight-binding model and show that it is impossible
for FT states to be the only dispersions near given energy, at least when spin-orbit coupling (SOC)
is neglected and for FT states arising from essential band contacts at HSP. Our proof relies on
topologically protected accidental band contacts tabulated in the literature [15–20].

2. Results and discussion

When SOC is neglected and the material is non-magnetic, the combined crystal symmetry and
TRS give FT states near BZ corners of layer groups 33, 43 and 45 [13]. From these layer groups,
space groups 29, 54 and 57 are obtained by adding pure vertical translation (notation for layer
and space groups is according to [21] and [22], respectively). We calculated the electronic band
structure within tight-binding approximation on a structure that belongs to layer groups 45 (site 4𝑐
with 𝑧 = 0.6Å, 𝑥 = 0.2), which is shown in Figure 1.

Tight-binding Hamiltonian arising from 𝑠-orbitals is:

𝐻̂ (k) = [ 𝑓0 + 𝑓1𝑐𝑜𝑠(k · a1)] 𝐼4
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Figure 1: Crystal structure of the tight-binding model with |a1 | =2Å, |a2 | =3Å. All nuclei are of the same
type. Black (gray) nuclei are located 0.6Å, above (below) the drawing plane. Fractional coordinates (in
{a1, a2}-basis) for nucleus 1, 2, 3 and 4 are (0.2, 0.2), (0.7, 0.2), (0.8, 0.7) and (0.3, 0.7), respectively. We
used program VESTA [23] for visualization.

where 𝐼4 is the four-dimensional unit matrix, k is a vector from the reciprocal space, while 𝑓0,
𝑔0, 𝑏0, 𝑓1 and 𝑐0 (real numbers) are hopping parameters for the zeroth, first, second, third and
fourth neighbor, respectively. The eigenvalues of 𝐻̂ are bands denoted such that 𝐸1(k) ≤ 𝐸2(k) ≤
𝐸3(k) ≤ 𝐸4(k) for every wave vector k. The full band structure for particular specified values of
parameters is shown in Figure 2a) and near BZ corner in Figure 2b). Doubly degenerate lines are
at BZ border as predicted by symmetry. The all four bands meet at the BZ corners. For closer look
at dispersions near BZ corners, we expand the Hamiltonian in the vicinity of (1/2, 1/2) in Taylor
series up to linear (first) order:

𝐻̂ (q) ≈ ( 𝑓0 − 𝑓1)𝐼4 + 𝑖

©­­­­«
0 −𝑏0q · a1 𝑐0q · a2 −𝑔0q · a2

𝑏0q · a1 0 −𝑔0q · a2 −𝑐0q · a2

−𝑐0q · a2 𝑔0q · a2 0 𝑏0q · a1

𝑔0q · a2 𝑐0q · a2 −𝑏0q · a1 0

ª®®®®¬
. (2)

The dispersion is:

𝐸1,2,3,4 ≈ 𝑓0 − 𝑓1 ±
����|𝑏0q · a1 | ±

√
𝑐2

0 + 𝑔2
0 |q · a2 |

���� , (3)

which is exactly FT type predicted in [13].
From (3) it follows that 𝐸1 = 𝐸2 and 𝐸3 = 𝐸4 if q · a1 = 0 or q · a2 = 0. These degeneracies are

located at BZ borders and they are essential (caused by symmetry). However, there is another line
of degeneracy 𝐸2 = 𝐸3, valid if |𝑏0q · a1 | =

√
𝑐2

0 + 𝑔2
0 |q · a2 |, which always has two solutions for

sufficiently small |q|. This degeneracy is accidental and it prevents the FT states to be the only states
at the Fermi level, provided it continues across the whole BZ. Exact eigenvalues of full Hamiltonian
(1) give lines of accidental degeneracies 𝐸2(k) = 𝐸3(k) for |k| not necessarily being small. These
lines are indicated in red in Figure 2c). Such lines are not property of a model, but will always
appear in group 45 as can be shown by the following argument. In the case with SOC included,
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Figure 2: Band structure of the model: a) full band structure for 𝑓0, 𝑔0, 𝑏0, 𝑓1 and 𝑐0 equal to 2𝑒𝑉 , 1.7𝑒𝑉 ,
1.2𝑒𝑉 , 0.7𝑒𝑉 and 0.3𝑒𝑉 , respectively, b) band structure near (1/2, 1/2) showing FT dispersion, c) lines
𝐸2 = 𝐸3 (denoted in red) in k-space, d) lines 𝐸2 = 𝐸3 for 𝑓0, 𝑔0, 𝑏0, 𝑓1 and 𝑐0 equal to 2.2𝑒𝑉 , 1.3𝑒𝑉 , 1.1𝑒𝑉 ,
0.4𝑒𝑉 and 0.1𝑒𝑉 , respectively. Grey rectangle in c) and d) denotes BZ border.

eight spinful non-degenerate bands are tangled together for groups 33, 43 and 45, giving electron
filling of 8𝑛 as necessary condition for an insulator [17]. Since inclusion of SOC cannot close
the gap, these eight bands (four if spin is not included) must be connected away from BZ corners,
also in the absence of SOC. This means that the line 𝐸2 = 𝐸3 will always be present although its
actual position depends on the parameters of the model. This is illustrated in Figure 2d) for slightly
different values of parameters.

3. Conclusions

In summary we have confirmed that symmetry gives FT states unavoidably in the BZ corners
of layer group 45, if the SOC is negligible and the magnetic order is absent. In addition, we showed
that these FT states cannot be alone at the Fermi level and that there are always other bands that
cross it. The same conclusion applies for remaining gray layer single groups with FT states (33 and
43). Our findings might help predicting new materials with anisotropic properties, or even suggest
how to modify existing layered materials to obtain ones with these three symmetry groups.
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