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Using the hard thermal loop (HTL) perturbation theory, we investigate the collective modes of
gluon in an anisotropic thermal medium in the presence of a constant background magnetic field.
The momentum space anisotropy of the medium has been incorporated into the distribution func-
tion via the generalized ‘Romatschke- Strickland’ form. The magnetic modification arises from
the quark loop contribution where the lowest Landau level approximation has been considered.
We examine two special cases: i) spheroidal anisotropy with an anisotropy vector orthogonal to
the external magnetic field, and ii) ellipsoidal anisotropy with two mutually orthogonal vectors
describing aniostropies along and orthogonal to the field direction. We use the general structure
of gluon self-energy that consists of six independent basis tensors. It is found that the strong
background magnetic field has a significant impact on the growth rate of the unstable modes. This
could have important effects on the equlibration of magnetized quark-gluon plasma.
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1. Introduction

The diverse findings from different heavy ion research communities indicate that the deconfined
quark-gluon plasma (QGP) matter produced in the ultra-relativistic heavy ion collision experiments
is most likely to deviate significantly from perfect local isotropic equilibrium. The viscous hydro-
dynamics which has been proved to be a reliable tool to study heavy-ion collisions, concludes that
the quark-gluon plasma (QGP) possess large pressure anisotropy along longitudinal and transverse
directions. This happens because of the large local rest frame momentum space anisotropy present
in the ?) − ?! plane [1]. According to several studies the momentum space anisotropy plays very
important role in isotropization and thermalization of the QCD plasma as it can give rise to plasma
instabilities [2–5]. To take into account the momentum space anisotropy within hard-thermal-loop
(HTL) perturbation theory, one usually considers the anisotropic momentum distribution function
for quarks and gluons which is called ‘Romatschke-Strickland’ form [1, 6]. In recent years several
efforts have been made to study the effect of momentum space anisotropy in bottomonia suppres-
sion [7–9], heavy-quark potential [10, 11], photon and dilepton production rates [12, 13] and so
on.

On the other hand, the production of a very strong magnetic field [14] in ultrarelativistic heavy-
ion collisions and its effect on the QGP properties have recently piqued the interest of heavy-ion
collision community. Some studies found that the magnetic field created in such collisions last for a
very short time [15, 16]. However, the electric conductivity of themedium can significantly increase
the lifetime of the magnetic field [17, 18]. Various research works have been performed to study the
effect of the strong magnetic field on the QCD plasma which resulted in several celebrated findings
like magnetic catalysis [19], inverse magnetic catalysis [20, 21], chiral magnetic effect [22], photon
and dilepton production rates [23, 24], heavy-quark potential [25], thermodynamic properties [20,
26] and so on. The presence of a very strong magnetic field in heavy-ion collision drives one
naturally to study the effect of it on anisotropic QGP. We consider the energy scale hierarchy√
|4�| � ) � 6B) within strong field approximation where 6B is the strong coupling constant. In

the strong field approximation, only the lowest Landau level is taken into account and the quark
dynamics becomes restricted to 1+1 dimension. We study the collective modes of gluon in an
anisotropic thermomagnetic medium within HTL approximations [27]. The general structure of the
gluon self-energy has been used from Ref. [28] and the collective modes are found from the pole
of the effective gluon propagator. We also study the instability of the gluon modes in presence of
anisotropic thermomagnetic medium. In Sec. 2, we briefly describe the general structure of gluon
self-energy that has been used to study the collective modes of gluon. We compute the one-loop
gluon self-energy within HTL approximations in Sec. 3. The results have been shown in Sec. 4 and
we conclude in Sec. 5.

2. The general structure of gluon self-energy

In this paper, two particular cases have been considered: i) spheroidal anisotropy with an
anisotropy vector orthogonal to the external magnetic field, and ii) ellipsoidal anisotropy with two
mutually orthogonal vectors describing aniostropies along and orthogonal to the field direction.
The general structure of gluon self-energy in the presence of an ellipsoidal anisotropy has been
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used for both the cases. This consists of six independent basis tensors. The ellipsoidal anisotropy
is characterized by two independent four vectors 0`1 and 0`2 . These four vectors, along with the
heat bath velocity D` and the gluon four momentum ?` are used to construct the independent basis
tensors for the general structure of gluon self-energy. The simple choice of basis tensors to express
the symmetric gluon polarization tensor is ?`?a , D`Da , 0`1 0

a
1 , 0

`

2 0
a
2 , ?

`Da + ?aD`, ?`0a1 + ?
a0
`

1 ,
?`0a2 + ?

a0
`

2 , D
`0a1 + 0

`

1 D
a , D`0a2 + D

a0
`

2 and 0`1 0
a
2 + 0

`

2 0
a
1 . Here, we did not consider the metric

tensor [`a in the set of basis tensors as this no longer remains an independent tensor in this particular
case of elipsoidal anisotropy. Now, the number of independent basis tensors is reduced from ten
to six by using the constraints from the transversaity condition ?`Π`a = 0. We obtain the six
independent basis tensors systematically in the following way. Firstly, we consider the general
structure of gluon self-energy in vacuum

Π`a =

(
[`a − ?

`?a

?2

)
Π(?2) = + `aΠ(?2). (1)

We obtain D̃` = + `aDa from + `a and use it to obtain the first basis tensor

�`a =
D̃`D̃a

D̃2 . (2)

Now, we define another tensor*`a = + `a − �`a which is used to obtain

0̃
`

2 = *
`a02a . (3)

This 0̃`2 is orthogonal to D̃` by construction. Now similar to the previous case, we obtain the second
basis tensor as

�`a =
0̃
`

2 0̃
a
2

0̃2
2
. (4)

The next basis tensor can be obtained using 0̃`2 and D` as

�`a =
D̃` 0̃a2 + 0̃

`

2 D̃
a

√
D̃2

√
0̃2

2

. (5)

To construct rest of the basis tensors, we define '`a = *`a − �`a and thereafter, 0̃`1 = '
`a01a .

This newly constructed four vector 0̃`1 is orthogonal to 0̃`2 as well as D̃`. The rest of the basis tensors
are constructed as

�`a =
0̃
`

1 0̃
a
1

0̃2
1
, (6)

�`a =
D̃` 0̃a1 + 0̃

`

1 D̃
a

√
D̃2

√
0̃2

1

, (7)

�`a =
0̃
`

1 0̃
a
2 + 0̃

`

2 0̃
a
1√

0̃2
1

√
0̃2

2

. (8)
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It should be noted that all the four vectors D̃`, 0̃`1 and 0̃`2 are orthogonal to the gluonmomentum
?`. Therefore, all the obtained basis tensors follow the transversality condition. The general
structure of gluon self-energy in the presence of an ellipsoidal anisotropic medium is expressed as
a linear combination of the six independent basis tensors as

Π`a = U�`a + V�`a + W�`a + X�`a + f�`a + _�`a . (9)

Here U, V, W, X, f and _ are the gluon self-energy form factors which will be computed from one
loop Feynman diagram using HTL approximations in the next section.

3. Collective modes of gluon from one loop diagram

Now, we obtain the one loop gluon self-energy in the presence of an anisotropic thermomagnetic
medium within HTL approximations following the Schwinger-Keldysh formalism. The one loop
gluon self-energy consists of three different contributions: i) gluon loop ii) ghost loop and iii) quark
loop. The gluon and ghost loop remain unaffected by the magnetic field. On the other hand, the
presence of anisotropy modifies all the contributions. The anisotropy is introduced to the system
by modelling the non-equillibrium distribution function using the ‘Romatschke-Strickland’ form.
The anisotropic distribution function for the gluons and ghosts is given as

5 B
aniso(k) ≡ 5

B
iso

(
1
Λ′
)

√
k2 + bG (k · x̂)2 + bH (k · ŷ)2 + bI (k · ẑ)2

)
. (10)

In the present study, this distribution function reduces to the the following.

5 B
aniso(k) ≡ 5

B
iso

(√
k2 + b1(k · a1)2 + b2(k · a2)2

Λ)

)
. (11)

The gluon and ghost contributions to the retarded gluon self-energy is obtained from the one-loop
diagram as

Π̃
`a

01
(l, p, b) = X01 <̃

2
�

∫
3Ωv
4c

E`
E; + b1(v · a1)0;1 + b2(v · a2)0;2
(1 + b1(v · a1)2 + b2(v · a2)2)2

[
[a; − Ea?;

l − p · v + 80+
] ����
;∈{1,2,3}

,

(12)

where <̃2
�
=

62
BΛ

2
)

3 #2 is the squared QCD Debye mass with # 5 = 0. 6B is the strong coupling
constant, whereas Λ) corresponds to the temperature in the equillibrium limit.

We choose the spatial anisotropy vectors a1 and a2 along Ĝ = (1, 0, 0) and Î = (0, 0, 1)
respectively.

In case of quark loop contribution, we construct the nonequllibrium fermion distribution
function in the lowest Landau level as

5 F
aniso(:I) ≡ 5 F

iso

(√
:2
I + bI (k · ẑ)2/Λ)

)
= 5 F

iso

(
|:I |/_)

)
, (13)

where _) = Λ) /
√

1 + b2. Now, we obtain the retarded photon self-energy in presence of strong
magnetic field and ellipsoidal anisotropy as

Π
`a

'
(?) = 42 |4� |

c
exp

(
− ?2

⊥
2 |4� |

) ∫
3:I
2c

5F (:I )
|:I |

[
[
`a
‖ −

:
`
‖ ?

a
‖ +:a‖ ?`‖

(:‖ ·?‖ )+8 n +
?2
‖ :
`
‖ :
a
‖[

(:‖ ·?‖ )+8 n
] 2

] �����
:0= |:I |

. (14)
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This can be easily extended to the gluon self-energy within HTL approximations. By considering
the anisotropic fermion distribution function in Eq. (13) we perform the integration in Eq. (14).

Π
`a

'
(?) =

<2
�,4

2 exp
(
− ?2

⊥
2 |4� |

) ∑
sgn(:I )=±1

E
`
‖ E

;
‖

1+b2

[
[a;‖ −

Ea‖ ?
;

(E‖ ·?‖+8 n )

] �����
;=3

, (15)

where the Debye mass is given as

<2
�,4 = − 42

c2 |4�|
∫
3 |:I |

m 5 iso
F ( |:I |)
m |:I | = 42 |4� |

2c2 . (16)

It should be noted that due to dimensional reduction in lowest Landau level, the self-energy in
Eq. (15) is independent of the momentum scale Λ) . However, it has implicit dependence on Λ)
through the running coupling constant. Also, it should be noticed that the anisotropy parameter in
Eq. (15) only appears as a multiplicative factor. Now, we obtain the quark contribution to the gluon
self-energy by including the flavor sum and the color factor as

Π̄
`a

01
(?) = X01

∑
5 6

2
B

|4 5 � |
8c2 exp

(
− ?2

⊥
2 |4 5 � |

) ∑
sgn(:I )=±1

E
`
‖ E

;
‖

1+b2

[
[a;‖ −

Ea‖ ?
;

(E‖ ·?‖+8 n )

] �����
;=3

. (17)

Therefore, the total retarded gluon self-energy can be written by adding the contributions from
Eqs. (12) and (17) as

Π
`a

01
(?, 4�, b,Λ) ) = Π̃

`a

01
(?, b1, b2,Λ) ) + Π̄`a01 (?, 4�, b2,Λ) ) , (18)

The collective modes of gluon in an anisotropic thermomagnetic medium can be obtained from
the pole of the effective gluon propagator

D = D0 − D0ΠD , (19)

where D is the bare gluon propagator and the inverse of it is given as

(D−1
0 )

`a = −?2[`a − 1 − Z
Z

?`?a . (20)

Here Z is the gauge fixing parameter. We obtain the collective modes of gluon from the pole of
Eq. (19) as

?2 −Ω0,±(?) = 0 , (21)

where the mode functions Ω0,± in terms of the gluon self-energy form factors are given by

Ω0 =
1
3
(U + V + X) − 1

3
s(

j+
√

4s3+j2

2

) 1
3
+ 1

3

( j + √
4s3 + j2

2

) 1
3
, (22)

Ω± =
1
3
(U + V + X) + 1 ± 8

√
3

6
s(

j+
√

4s3+j2

2

) 1
3
− 1 ∓ 8

√
3

6

( j + √
4s3 + j2

2

) 1
3
, (23)
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where, the s and j in the expression are defined in terms of the form factors as

s = U(V − U) + V(X − V) + X(U − X) − 3(W2 + _2 + f2) , (24)
j = (2U − V − X) (2V − X − U) (2X − U − V) + 54W_f
− 9

[
U(2_2 − f2 − W2) + V(2f2 − W2 − _2) + X(2W2 − _2 − f2)

]
. (25)

We define a mass scale corresponding to each form factors of the gluon self-energy as

<2
U = lim

l→0
U, (26)

where <U is the mass scale of form factor U. We can also define mass scales corresponding to each
gluon dispersive modes as

<2
Ω0,±

= lim
l→0

Ω0,±(l, ?, \?, q?). (27)

A negative value of the squared mass indicates the presence of instability.

4. Results

To obtain the gluon self-energy form factors in an ellipsoidally anisotropic thermomagnetic
medium, we consider the - −. plane as the reaction plane. The magnetic field is considered along
the Î direction whereas, the two anisotropies a1 and a2 are chosen along Ĝ and Î respectively as
already mentioned before.
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Figure 1: The collective modes of gluon with (a) spheroidal and (b) ellipsoidal anisotropy are shown for
\? = c/4 and q? = c/6 at fixed momentum scale Λ) = 0.2 GeV and magnetic field strength 30<2

c . The
light cone (magenta) is also shown for comparison.

The dispersive modes of gluon can be obtained from the pole of the effective gluon propagator
in Eq. (19). Gluon has three collective modes in the presence of momentum space anisotropy and
an external magnetic field which has been shown in Fig. 1. In Fig. 1 (a), we show gluon dispersive
modes in case of spheroidal anisotropy, whereas, ellipsoidal momentum space anisotropy has been
considered in Fig. 1 (b). It can be noticed that all the dispersive modes of gluon possess different
plasma frequencies. Moreover, the plasma frequencies decrease when ellipsoidal anisotropy is
considered. This happens because the anisotropy parameter b2 appears as an overall suppression
factor in Eq. (17) thereby decreasing the quark loop contribution.
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Figure 2: Variation of the squared mass with polar angle \? is shown for each mode functions at fixed values
of external parameters q? = c/12, b1 = 10, Λ) = 0.2 GeV and 4� = 30<2

c . The continuous and the dashed
curves represent b2 = 5 and b2 = 0 respectively.

The squared mass corresponding to the gluon self-energy modes are plotted as a function of the
propagation angle \? in Fig. 2. We have shown two scenarios: i) one with b = (10, 0) and ii) the
other with b = (10, 5). It can be noticed from the figure that the squared mass of two modesΩ+ and
Ω− become negative with increasing \? for b = (10, 0). On the other hand, <2

Ω0
remains positive

in the whole range of \?. However, the \? dependence of the squared mass almost vanishes when
the momentum anisotropy along the magnetic field is switched on.
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Figure 3: The growth rate corresponding to Ω+ mode is plotted for (a) b = (10, 0) and (b) b = (10, 5) at
fixed angles \? = c/3, q? = c/6. The continuous and the dashed curves correspond to the magnetic field
strength 0 and 30<2

c respectively.

As previously mentioned, the negative squared mass indicates the presence of unstable modes
i.e., the amplitude of the modes grow exponentially with time. This growth rate i.e., the imaginary
part of the mode frequency can be found from the pole of the effective propagator in Eq. (19).
The growth rate Γ+ of the unstable ‘+’ mode is shown in Fig. 3 for (\?, q?) = (c/3, c/6). We

7



P
o
S
(
B
P
U
1
1
)
0
9
3

Study of collective modes of gluon in an anisotropic thermomagnetic medium Bithika Karmakar

show the growth rate Γ+ for spheroidal anisotropy b = (10, 0) in Fig. 3 (a), whereas, in Fig. 3 (b)
ellipsoidal momentum space anisotropy b = (10, 5) has been considered. It should be noted that
the growth rate decreases in the presence of a magnetic field. It is also interesting to note that there
exists a critical value of the momentum above which the growth rate of the unstable mode becomes
negative i.e., the mode becomes stable. This particular charachertistics of the instability of gluon
modes exists for both the spheroidal and ellipsoidal anisotropic system. But the presence of the
external magnetic field significantly decreases the critical momentum. Therefore, if the magnetic
field is very strong, then the gluon modes may become stable. However, such high magnetic field
is unlikely to be produced in heavy-ion collision.

5. Conclusion

We have studied the collective modes of gluon in the presence of an external magnetic field and
a momentum space anisotropy within hard-thermal loop perturbation theory. The gluon self-energy
consists of gluon, ghost and quark loop contribution among which the gluon and the ghost loop
remain unaffected by the external magnetic field. The magnetic field effect is manifested in the
quark loop contribution which is computed within the lowest Landau level approximation. The
momentum space anisotropy is taken into account using the ‘Romatschke-Strickland’ form of the
anisotropic distribution function. The anisotropic quark distribution function has been carefully
constructed for the 1+1 dimensional quark contribution of the gluon self-energy. The general
structure of gluon self-energy for ellipsoidally anisotropic medium been used to study the collective
modes of gluon. The azimuthal symmetry of the system is lost when the external magnetic field is
considered along with the ellipsoidal momentum space anisotropy. Therefore, the three collective
modes of the gluon depends on the polar as well as on the azimuthal angle. We found that the
anisotropy parameter b2 appears as an overall suppressing factor in the 1+1 dimensional quark loop
contribution which counterbalances the magnetic field effects.

We define mass scale corresponding to each gluon modes. The negative value of the squared
mass indicates the presence of instability in the system i.e., the modes grow exponentially. The
angluar dependence of the squared mass has been analyzed. The magnetic field has significant
effect on the growth rate of the unstable gluon modes. The amplitude as well as the critical
momentum beyond which unstable modes cease to exist, are reduced in the presence of the external
magnetic field. This can be compared to the instability growth rate in collisional plasma where
larger collisional frequency suppresses the growth rate.

6. Acknowledgment

B. K. is supported by European Research Council, grant ERC-2016-COG: 725741. B. K.
thanks the organizers of BPU11 Congress for the invitation.

References

[1] P. Romatschke and M. Strickland, Phys. Rev. D 68, 036004 (2003).

[2] P. B. Arnold, J. Lenaghan and G. D. Moore, JHEP 08, 002 (2003).

8



P
o
S
(
B
P
U
1
1
)
0
9
3

Study of collective modes of gluon in an anisotropic thermomagnetic medium Bithika Karmakar

[3] S. Mrowczynski, Phys. Lett. B 214, 587 (1988) [erratum: Phys. Lett. B 656, 273 (2007)].

[4] S. Mrowczynski, Phys. Lett. B 314, 118-121 (1993).

[5] S. Mrowczynski and M. H. Thoma, Phys. Rev. D 62, 036011 (2000).

[6] P. Romatschke and M. Strickland, Phys. Rev. D 70, 116006 (2004).

[7] M. Strickland, Phys. Rev. Lett. 107, 132301 (2011).

[8] M. Strickland and D. Bazow, Nucl. Phys. A 879, 25-58 (2012).

[9] B. Krouppa, R. Ryblewski and M. Strickland, Phys. Rev. C 92, no.6, 061901 (2015).

[10] M. Nopoush, Y. Guo and M. Strickland, JHEP 09, 063 (2017).

[11] A. Dumitru, Y. Guo and M. Strickland, Phys. Lett. B 662, 37-42 (2008).

[12] B. Schenke and M. Strickland, Phys. Rev. D 76, 025023 (2007).

[13] L. Bhattacharya, R. Ryblewski and M. Strickland, Phys. Rev. D 93, no.6, 065005 (2016).

[14] D. E. Kharzeev, L. D. McLerran and H. J. Warringa, Nucl. Phys. A 803, 227-253 (2008).

[15] L. McLerran and V. Skokov, Nucl. Phys. A 929, 184-190 (2014).

[16] X. G. Huang, Rept. Prog. Phys. 79, no.7, 076302 (2016).

[17] K. Tuchin, Phys. Rev. C 88, no.2, 024911 (2013).

[18] K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013).

[19] D. S. Lee, C. N. Leung and Y. J. Ng, Phys. Rev. D 55, 6504-6513 (1997).

[20] G. S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S. D. Katz, S. Krieg, A. Schafer and
K. K. Szabo, JHEP 02, 044 (2012).

[21] A. Ayala, M. Loewe, A. J. Mizher and R. Zamora, Phys. Rev. D 90, no.3, 036001 (2014).

[22] K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D 78, 074033 (2008).

[23] X. Wang, I. A. Shovkovy, L. Yu and M. Huang, Phys. Rev. D 102, no.7, 076010 (2020).

[24] K. Tuchin, Phys. Rev. C 88, 024910 (2013).

[25] B. Singh, L. Thakur and H. Mishra, Phys. Rev. D 97, no.9, 096011 (2018).

[26] B. Karmakar, R. Ghosh, A. Bandyopadhyay, N. Haque and M. G. Mustafa, Phys. Rev. D 99,
no.9, 094002 (2019).

[27] B. Karmakar, R. Ghosh and A. Mukherjee, Phys. Rev. D 106, no.11, 116006 (2022).

[28] R. Ghosh, B. Karmakar and A. Mukherjee, Phys. Rev. D 102, no.11, 114002 (2020).

9


	Introduction
	The general structure of gluon self-energy
	Collective modes of gluon from one loop diagram
	Results
	Conclusion
	Acknowledgment

