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A well-known paradigm about the origin of Galactic cosmic rays (CRs) is that these high-energy
particles are accelerated in the process of diffusive shock acceleration (DSA) at collisionless
shocks (at least up to the so-called "knee"energy of 1015 eV). Knowing the details of injection
of electrons, protons and heavier nuclei into the DSA, their initial and the resulting spectrum, is
extremely important in many "practical" applications of the CR astrophysics, e.g. in modelling
of the gamma or synchrotron radio emission of astrophysical sources. In this contribution I we
will give an overview of the DSA theory and the results of observations and kinetic Particle-
In-Cell (PIC) simulations that support the basic theoretical concepts. PIC simulations of quasi-
parallel collisionless shocks show that thermal and supra-thermal proton distribution functions
at the shock can be represented by a single quasi-thermal distribution - the 𝜅-distribution that is
commonly observed in out-of-equilibrium space plasmas. Farther downstream, index 𝜅 increases
and the low-energy spectrum tends to Maxwell distribution. On the other hand, higher-energy
particles continue through the acceleration process and the non-thermal particle spectrum takes a
characteristic power-law form predicted by the linear DSA theory. In the end, I will show what
modification of the spectra is expected in the non-linear DSA, when CR back-reaction to the shock
is taken into account.
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Diffusive Shock Acceleration of Cosmic Rays

1. Introduction

As widely known, cosmic rays (CRs) were discovered by Victor Hess in his famous balloon
experiment in 1912 (see [1]), for which he later won the Nobel prize in physics in 1936. CRs are
primarily composed of protons, 𝛼-particles and heavier nuclei, but also electrons. We can actually
distinguish between primary and secondary CRs, the latter being produced in Earth’s atmosphere by
primary particles and observed as air showers – extensive cascades of ionized particles and photons,
which can be many kilometres wide (see e.g. [2]). We can also distinguish between CRs at the top
of Earth atmosphere and CRs at a source (which can, excluding energetic particles coming from
the Sun, be Galactic or extragalactic). The observed all particle distribution is largely isotropic and
to a very good approximation a power-law with the slope 𝛤 ≈ 2.7 up to the energy ∼ 1015 eV –
the so-called "knee" in the spectrum (Fig. 1). At lower energies, the spectrum is affected by Solar
modulation. Above the "knee" the spectrum is steeper, ending in the so-called "ankle" and "toe"
region at about ∼ 1019 − 1020 eV. The dominant paradigm about the origin of CRs is that they are
majorly produced by sources within our Galaxy, such as supernova remnants (SNRs) that might be
able to produce CR particles even up to the ∼ 1017 eV [3]. It is believed that higher-energy and
ultra high-energy CRs are of extragalactic origin.

CRs produced by Galactic sources are affected by magnetic field and diffuse through the Galaxy
so the observed CRs spectrum is expected to be different than the spectrum at the source. In this
contribution, we are primarily interested in the latter and we will focus on strong shocks of SNRs
as the sites of particle acceleration through the so-called first order Fermi acceleration. Originally,
a mechanism for particle acceleration at the source (interstellar medium (ISM) clouds acting as
magnetic mirrors) was proposed by Fermi [4] and this is now called type II or the second order
Fermi acceleration, because the relative gain in particle energy is Δ𝐸/𝐸 ∼ (𝑉/𝑐)2, where 𝑉 is the
relative velocity of clouds that reflect particles. In the more efficient type I or the first order Fermi
acceleration Δ𝐸/𝐸 ∼ 𝑉/𝑐. A modern version of the first order Fermi acceleration – diffuse shock
acceleration (DSA) theory, in which 𝑉 is actually the shock velocity, was developed independently
by Axford et al., Krymsky, Bell, and Blandford and Ostriker [5–8]. There are two main approaches
to the problem: macroscopic and microscopic developed by Bell [7]. In the next section we will
give a brief overview of the basic concept of DSA and write down the resulting non-thermal particle
spectrum.

2. Non-thermal particle distribution

DSA is in its essence a non-thermal process. In the macroscopic approach, one starts from
collisionless plasma kinetic equation to find the momentum distribution function 𝑓 (𝑝) immediately
ahead (upstream) and behind (downstream) the shock front. Since this function should be invariant
across the shock, from matching conditions one finds the power-law spectrum 𝑓 (𝑝) ∝ 𝑝−𝛤−2 where
the slope is related to the shock compression 𝑅 as 𝛤 = (𝑅 + 2)/(𝑅 − 1) (see e.g. [9, 10]). The
microscopic approach is more intuitive since it tries to explain what is happening with individual
particles. The basic idea behind it is that if (seed) particles are energetic enough, they can cross
and re-cross the shock front unaffected, unlike the thermal particles that are advected and heated
downstream by the shock. These seed particles gyrating along (nearly) parallel magnetic field 𝐵0
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Diffusive Shock Acceleration of Cosmic Rays

Figure 1: Observed cosmic rays energy spectrum [13]. Data are from H4a model [14].

are being scattered by turbulances/Alfven waves behind/ahead of the shock which act as scattering
centers in the downstream/upstream plasma. If we make Lorentz transformations from upstream
to downstream plasma frame, we will see that in each crossing and re-crossing of the shock a
particle has gained a small amount of energy i.e. momentum Δ𝑝/𝑝 ∝ 𝑉/𝑐. If there are many
such crossings, a particle will ultimately become ultra-relativistic. What is happening in parallel
at strong shocks is magnetic field amplification due to streaming instability [11, 12], in addition to
plain shock compression (of normal field component) which cannot explain the observed magnetic
field strengths.

To find the particle spectrum, we will follow the derivation from [15]. We will not assume that
the particles are ultra-relativistic (𝑣 ≠ 𝑐), so for the momentum gain we have

G =
Δ𝑝

𝑝
≈ 4

3
𝑉1 −𝑉2
𝑣

=
4(𝑅 − 1)

3
𝑉2
𝑣
, (1)

where 𝑉1 = −𝑉 and 𝑉2 = 𝑉1/𝑅 are respectively upstream and downstream plasma velocity, as
observed in the shock frame (upstream plasma is assumed to be at rest in the laboratory frame). Bell
[7] argued that the probability of a particle to be advected downstream is P =

4𝑉2
𝑣

, and consequently,
the probability to escape upstream and stay in the process of acceleration is P𝐵 = 1 − P. In [15],
the authors generalized Bell’s probability to (see also [16, 17]):

P𝐵 =

(
1 − 𝑉2

𝑣

1 + 𝑉2
𝑣

)2

≈ 1 − 4𝑉2
𝑣
, (2)

assuming non-relativistic shocks.
Probability P is related to the cumulative number change

Δ𝑁

𝑁
= −P = P𝐵 − 1 =

− 4𝑉2
𝑣

(1 +𝑉2/𝑣)2 , (3)
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Figure 2: The non-thermal CR proton and electron distributions with 𝛤 = 2, obtained by assuming
𝑁CR = 𝑁p = 𝑁e and equal injection energies 𝐸0 =

𝑝2
0

2𝑚p
∼ 1

2𝑚p𝑉
2.

which combined with the momentum gain, under transformations Δ𝑁
𝑁

→ 𝑑𝑁
𝑁

= −P and Δ𝑝

𝑝
→

𝑑𝑝

𝑝
= G give

𝑑 ln 𝑁
𝑑 ln 𝑝

= −P
G , 𝑓 = − 1

4𝜋𝑝2
𝑑𝑁

𝑑𝑝
. (4)

From the last equation, one can finally obtain

𝑓 (𝑝) = 3𝑁CR

4𝜋(𝑅 − 1)𝑝3
0

(
1 + 𝑉2

𝑣0

) 3
𝑅−1

( 𝑝
𝑝0

)− 3𝑅
𝑅−1

(
1 + 𝑉2

𝑣

)− 2𝑅+1
𝑅−1

𝑒
3𝑉2
𝑅−1 (

1
𝑣0+𝑉2

− 1
𝑣+𝑉2

)
, (5)

where 𝑁𝐶𝑅 is the total number of CRs, and 𝑝0 is some injection momentum. For 𝑝 ≫ 𝑚𝑉2 Eq. (5)
gives the same power-law dependence as the microscopic approach 𝑓 (𝑝) ∝ (𝑝/𝑝0)−3𝑅/(𝑅−1) ∝ 𝑝−4

i.e. 𝛤 = 2 for the standard shock compression 𝑅 = 4. The non-thermal CR proton and electron
distributions are shown in Fig. 2, assuming 𝑁p = 𝑁e and equal injection energies (as we shall
see later, this implies nearly equal temperatures 𝑇p ≈ 𝑇e). The high-energy power-law distribution
is well supported (at least for electrons) by radio observations of astrophysical sources, SNRs in
particular, which show power-law frequency spectra ∝ 𝜈−𝛼 where spectral index 𝛼 = (𝛤 − 1)/2 has
a mean value around 0.5 (again 𝛤 ≈ 2). Distributions at lower momentum given by Eq. (5) and
plotted in Fig. 2 are uncertain, since here we enter the supra-thermal particles domain.
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3. Supra-thermal particles

Since observational data about particle acceleration is limited, important information and valu-
able insight in this process are obtained through kinetic particle-in-cell (PIC) or hybrid simulations
of collisionless shocks that serve as a sort of astrophysical laboratories (see e.g. [18–20]). They are
particularly important for understanding the injection mechanisms. The acceleration of CR protons
is generally better understood, because if the shock thickness is of the order of gyroradius of thermal
protons, a small number of slightly more energetic protons should be able to move across the shock
and thus be injected into DSA. The acceleration of electrons is generally less understood, since
due to their much lower mass, electrons have significantly smaller gyroradii than protons and are
thus more bound to shock front. Nevertheless, they seem to be pre-accelarated through shock-drift
acceleration (SDA) or by a combination of SDA and DSA, until they reach injection momentum
of protons, enter full DSA cycles and continue to behave in a similar fashion as ions, ultimately
becoming ultra-relativistic and following a characteristic non-thermal power-law test-particle DSA
distribution (see [21–23]).

In Fig 3. we give spectra obtained in PIC simulations of quasi-parallel collisionless shocks
with different proton-to-electron mass ratios from [24]. We see that proton and electron spectra
have similar shapes that at low energies deviate from the Maxwellian (given by dashed lines). A
particularly visible deviation is in the supra-thermal domain, between thermal and non-thermal
energies i.e momenta. In [25] the authors accomplished to explain this non-thermal distribution
by the so-called minimal model. The idea is that while most of the ions will be advected and
thermalized downstream, some can gain extra energy in SDA or micro-DSA [24] cycles becoming
supra-thermal. Those protons that continue DSA cycles will become non-thermal. The complete
distribution function can thus be represented as a combination of thermal (Maxwelian), supra-
thermal and non-thermal (power-law) parts.

To find the supra-thermal distribution, Caprioli et al. [25] assumed a constant probability for
a particle to be advected P = 0.75, meaning that roughly 75% of particles would be thermalized,
while the remaining 25% would become supra-thermal/non-thermal. This can be understood if
there is a modified probability for a particle to cross to the upstream i.e. stay in the cycles, P𝐴 · P𝐵,
where P𝐵 is Bell’s probability and P𝐴 a probability for a particle to pass through the shock of some
finite thickness, not being reflected back downstream. If again we use the approach from [15] with
momentum gain from Eq. (1) and assuming the particles being non-relativistic, 𝑝 = 𝑚𝑣, we get for
the supra-thermal distribution

𝑓 (𝑝) = 3𝑁STP
16𝜋(𝑅 − 1)𝑚𝑉2𝑝2 𝑒

3P
4(𝑅−1)𝑚𝑉2

(𝑝min−𝑝)
, (6)

where 𝑁ST is the total number of suprathermal particles, and 𝑝min is the minimum momentum at
which particles enter SDA.

Instead of describing supra-thermal and non-thermal particle distributions through the same
formalism, one could also try to describe thermal and suprathermal particle distribution with one
quasi-thermal distribution – the 𝜅-distribution [15, 26]. Such non-equlibrium distributions are
common to space plasmas, with index 𝜅 being a free parameter which is a kind of a measure of
non-equilibrium [27, 28]. When 𝜅 → ∞, the plasma reaches the thermodynamic equilibrium and
the distribution becomes Maxwellian.
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Figure 3: Proton and electron spectra in simulation runs 1-3 (with mass ratio 𝑚p/𝑚e = 2, 4, 16, from top to
bottom, respectively) from [24]. The simulation parameters are: magnetization 𝜎 = 𝐵2

0/(4𝜋𝛾0𝑚p𝑛p𝑐
2)) =

2.5 × 10−3, 2.5 × 10−3, 0.6 × 10−3, shock velocity 𝑉/𝑐 = 0.67, 0.67, 0.33 and Alfvenic Mach number
𝑀𝐴 = 13, where 𝐵0 is ambient magnetic field, 𝑛p proton number density, 𝛾0 = 1/

√︁
1 −𝑉2/𝑐2.

Relativistic generalization of 𝜅-distribution can be written as

𝑑𝑁

𝑑𝑝
= 4𝜋𝑝2 𝑓 =

𝑁0𝐶𝑝
2

𝑚3𝑐2
1[

1 +

√︂
1+ 𝑝2

𝑚2𝑐2 −1

𝜅Θ

] 𝜅+1
, (7)

where constant 𝐶 is found from normalization
∫ ∞
0 4𝜋𝑝2 𝑓 𝑑𝑝 = 𝑁0:

𝐶−1 =
(𝜋𝜅2Θ2)3/2(𝜅 + 1)Γ(𝜅 − 2)2𝐹1(− 3

2 , 𝜅 − 2, 𝜅 + 1
2 , 1 − 2

𝜅Θ
)

4𝜋Γ(𝜅 + 1
2 )

, (8)

Γ(𝑥) being the Gamma-function, 2𝐹1(𝑎, 𝑏, 𝑐, 𝑥) is Gauss hypergeometric function (see [29]) and
Θ = 𝑘𝑇𝜅/(𝑚𝑐2), 𝑇𝜅 not being the usual thermodynamic temperature if plasma is out of equilibrium.
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In the limit 𝜅 → ∞, this distribution becomes the Maxwell-Jütter distribution (see [30])

𝑑𝑁

𝑑𝑝
=

𝑁0𝑝
2

𝑚3𝑐2Θ𝐾2(1/Θ)
𝑒−

√︄
1+ 𝑝2

𝑚2𝑐2
Θ , (9)

where 𝑇 is now thermodynamic temperature and 𝐾2(𝑥) the modified Bessel function of the second
order. On the other hand, if Θ ≪ 1 (𝑝 ≪ 𝑚𝑐) we can obtain standard non-relativistic 𝜅-distribution

𝑑𝑁

𝑑𝑝
=

𝑁04𝜋𝑝2

(𝜋𝜅𝑝2
𝜅 )3/2

Γ(𝜅 + 1)
Γ(𝜅 − 1

2 )
1[

1 + 𝑝2

𝜅 𝑝2
𝜅

] 𝜅+1 , 𝑝2
𝜅 = 2𝑚𝑘𝑇𝜅 (10)

which, as we said, for 𝜅 → ∞ tends to Maxwell distribution

𝑑𝑁

𝑑𝑝
=

4𝜋𝑝2𝑁0

(2𝜋𝑚𝑘𝑇)3/2 𝑒
− 𝑝2

2𝑚𝑘𝑇 . (11)

For higher momenta, 𝜅-distribution is actually a power-law. Note, however, the different
power-law dependence of non-relativistic and ultra-relativistic 𝜅-distribution when 𝑝 → ∞

𝑑𝑁

𝑑𝑝
∝

{
𝑝−2𝜅 , 𝑝 ≪ 𝑚𝑐

𝑝1−𝜅 , 𝑝 ≫ 𝑚𝑐.
(12)

This is relevant for ultra-relativistic shocks when one component (namely, electrons) can be highly
relativistic (e.g. jets of active galactic nuclei). In the proceeding section, as it was in the major part
of the manuscript, we shall, nevertheless, deal only with non-relativistic shocks, characteristic for
SNRs.

4. Non-linear diffusive shock acceleration

Test-particle approach to DSA assumes that the energy density or pressure of CRs is negligible,
so that CR presence does not modify (Rankine-Hugoniot) jump conditions. When this is not the
case, we are talking about CR back-reaction and non-linear DSA (see e.g. [9, 12, 31–33]). The back-
reaction of CRs affects the shock in such a way that high-energy particles ahead of the shock induce
shock precursor with density, pressure and velocity gradients. The discontinuity is, nevertheless,
still present as the so-called subshock with compression 𝑅sub. The total compression of a modified
shock is larger 𝑅tot > 𝑅sub.

On the other hand, the shock itself modifies CR particles, producing the concave-up spectrum.
This is because the lower-energy CRs will only experience the jump at the subshock and have
steeper spectrum, while the higher-energy particles will diffuse farther upstream in the precursor
and experience larger compression, consequently having a flatter spectrum.

For modelling proton and electron spectra we shall use Blasi’s semi-analytical model whose
details can be found in [32, 33] (see also [12, 23, 34–39]). Blasi’s model implies solving coupled
equations (obtained from diffusion-advection equations and mass and momentum conservation):

1
3

( 1
𝑅tot

−𝑈𝑝

)
𝑝
𝑑𝑓p

𝑑𝑝
−

(
𝑈𝑝 +

1
3
𝑝
𝑑𝑈𝑝

𝑑𝑝

)
= 0, (13)
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Figure 4: Acceleration efficiency as the function of injection parameter for the Maxwellian and 𝜅 = 5,10,20
cases and fixed 𝑅sub = 4 (which in reality also depends on 𝜉).

1
3

( 1
𝑅tot

−𝑈𝑝

)
𝑝
𝑑𝑓e
𝑑𝑝

−
(
𝑈𝑝 +

1
3
𝑝
𝑑𝑈𝑝

𝑑𝑝

)
= 0, (14)

𝑑𝑈𝑝

𝑑𝑝

(
1 −

𝑈
−(𝛾+1)
𝑝

𝑀2
0

(
2 + 𝜁 (𝛾 − 1)

𝑀2
0

𝑀A

)
− 1 − 𝜁

8𝑀A

𝑈2
𝑝 + 3

𝑈
5/2
𝑝

)
=

𝑝4 𝑓p√︁
1 + 𝑝2

+ 𝑝4 𝑓e√︃
(𝑚e/𝑚p)2 + 𝑝2

, (15)

where 𝑝 is in units 𝑚p𝑐, distribution functions 𝑓 are given in some arbitrary units, 𝑀0 is Mach
number, 𝑀𝐴 Alfvenic Mach number, 𝜁 Alfven-heating parameter, 𝛾 adiabatic index and𝑈𝑝 = 𝑢𝑝/𝑉
is dimensionless average velocity in the precursor. The setup is similar as in [23] and assumes
constant electron heating ahead of the subshock 𝑇p

2 = 𝑇 ′
2

p − Δ𝐸, 𝑇e
2 = 𝑇 ′

2
e + Δ𝐸 where Δ𝐸 ≈ 0.3

keV [40, 41] and temperatures 𝑇 ′
2 are obtained from jump conditions. In any case, the injection

parameter 𝜉 = 𝑝inj/𝑝th must be given (𝑝th =
√︁

2𝑚p,e𝑘𝑇p,e), and it is assumed that its value is the
same for protons and electrons. By matching non-thermal power-law to Maxwell distribution Blasi
et al. [35] related injection parameter 𝜉 to injection efficiency 𝜂 = 𝑁𝐶𝑅/𝑛, where 𝑛 is particle
number density,

𝜂 =
4

3
√
𝜋
(𝑅sub − 1)𝜉3𝑒−𝜉 2

. (16)
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Figure 5: From top to bottom, proton and electron spectra for injection parameters 𝜉 = 3.3, 4.3 and 8.3,
all for 𝜅 = 5. Solid line shows quasi-thermal 𝜅-distribution and non-thermal distributions that join at 𝑝inj.
Maxwellian with the same downstream temperature is shown with dashed line.
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In current models [42], we match power-law to 𝜅-distribution (𝑝2
𝜅 =

𝜅−3/2
𝜅

𝑝2
th) so

𝜂

1 − 𝜂 =
4

3
√
𝜋
(𝑅sub − 1) Γ(𝜅 + 1)

(𝜅 − 3
2 )3/2Γ(𝜅 − 1

2 )
𝜉3[

1 + 𝜉 2

𝜅− 3
2

] 𝜅+1 ·

·
[
1 − 4

√
𝜋

Γ(𝜅 + 1)
(𝜅 − 3

2 )1/2−𝜅 (2𝜅 − 1)Γ(𝜅 − 1
2 )
𝜉1−2𝜅

]
, (17)

i.e.
𝜂 ≈ 4

3
√
𝜋
(𝑅sub − 1) Γ(𝜅 + 1)

(𝜅 − 3
2 )3/2Γ(𝜅 − 1

2 )
𝜉3[

1 + 𝜉 2

𝜅− 3
2

] 𝜅+1 . (18)

The last equation generally gives higher efficiency when compared to the case 𝜅 → ∞ (see Fig. 4).
In Fig. 5 we give the results for three cases: 𝜉 = 3.3, and 𝜉 = 4.3, as in [23, 43], and additionally

𝜉 = 8.3 (all for 𝜅 = 5). In all cases the other parameters are the same: shock velocity 𝑉 = 5000
km/s, ambient density 𝑛H ∼ 0.1 cm−3, temperature 𝑇0 = 100000 K, magnetic field 𝐵0 = 5.3775
𝜇Ga, Mach and Alfven-Mach numbers 𝑀0 = 𝑀𝐴 = 135, and Alfven-heating parameter 𝜁 = 0.5.
The plots show quasi-thermal 𝜅-distribution and non-thermal distributions that join at 𝑝inj (solid
line) and Maxwellian with the same downstream temperature (dashed line). For the case 𝜉= 3.3,
the subshock and total compressions are 𝑅sub = 2.31, 𝑅tot = 10.79, with acceleration efficiency 𝜂 =
0.012 and electron-to-proton ratio at high energies 𝐾ep = 0.00002; while for 𝜉 = 4.3, 𝑅sub = 2.67, 𝑅tot
= 10.75, 𝜂 = 0.0026 and 𝐾ep = 0.00017. For the case 𝜉 = 8.3, the subshock and total compressions
are 𝑅sub = 3.96, 𝑅tot = 4.91, 𝜂 = 0.00003 and 𝐾ep = 0.00217.

We see that, unlike the Maxwellian-match situation where realistic 𝜉 ∼ 3.5−4, to reach the test
particle case here, 𝜉 must be much larger and the first two cases still show characteristics of strongly
modified shocks. In principle, one could introduce a modified injection parameter 𝜉′ = 𝐹 (𝜅)𝜉,
where 𝐹 (𝜅) is a function chosen in such a way that values of 𝜉′ correspond to the values of
original Blasi’s injection parameter more, but the acceleration efficiency would still depend on two
parameters 𝜉′ and index 𝜅.

5. Instead of conclusions

In this contribution we gave a very brief overview of the test particle and non-linear DSA
theory and the resulting non-thermal, but also supra-thermal particle spectra. We suggest that the
low-energy spectra at the shock, i.e. immediately downstream, can be represented by a single quasi-
thermal distribution - the 𝜅-distribution that is commonly observed in out-of-equilibrium space
plasmas. This may be extremely important in many "practical" applications of CR astrophysics, e.g.
in modelling of the gamma or synchrotron radio emission of astrophysical sources, such as SNRs.
Farther downstream, index 𝜅 increases and the low-energy spectrum tends to Maxwell distribution
[15]. On the other hand, [44] found evidence of shock modification in hybrid simulations due to
the presence of the so-called postcursor in the downstream, which has important consequences for
non-thermal spectrum that need to be investigated.

The models presented can and should be further improved, e.g. in the case of electrons by
including synchrotron losses [45, 46]. However, it would be more crucial to address the question of
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free parameters, such as 𝜁 and 𝜂. Regarding the former, one should consider not only resonant [47],
but also non-resonant magnetic field amplification [11], whereas regarding the latter we need to find
out: a) how injection efficiencies of both protons and electrons, b) downstream electron-to-proton
temperature ratio, and c) CR electron-to-proton ratio at high energies, all change with shock velocity
i.e. Mach’s number. The answers to these questions can hopefully be provided by PIC simulations.
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